LECTURE NOTES. CSI 32. INTRODUCTION TO
COMPUTER PROGRAMMING 2

BASED ON OBJECT-ORIENTED PROGRAMMING IN PYTHON, BY
GOLDWASSER AND LETSCHER

(http://cs.slu.edu/~ goldwamh/oopp/)



1. DATA AND TYPES: FUNCTIONS AND ALGORITHMS, OBJECTS AND CLASSES: OO DESIGN

(sectioNs 1.1, 1.2, 1.3, 1.4, 1.5)

Two aspects of computing: Data and Operations.
Data and Types:
Definition of Data in the context of computing:

The quantities, characters, or symbols on which operations are performed by computers and
other automatic equipment, and which may be stored or transmitted in the form of electrical
signals, records on magnetic tape or punched cards, etc.,.

Within modern computers, all information is represented as a collection of binary digits,
also known as bits.

Each bit can be set to 0 or 1.

Combining many bits a wider variety of patterns can be stored to represent pieces of infor-
mation.

A byte is a set of 8 bits. It can represent 2% = 256 different values. With millions of bits,
large amount of data can be stored.

Much of the data being used by a computer processor is stored in the computer’s main
memory, referred to as RAM (random access memory).

Information is high-level abstraction, while data is a low-level representation of such
information, capable of being stored and manipulated by a computer. That is, there could be
several ways of representing information — each such choice of representation is an encoding
(example, JPG and GIF formats are different encodings of the same picture, or the same
information).

Data types:

Though all data is stored as a sequence of bits, it would be cumbersome to specify the exact
encoding for every piece of data.

Higher-level abstractions are supported through the definition of data types.

Example, integer, floating point, string, or user-defined types.

Numbers, characters, dates, lists exist as pre-defined data types. These are often called the
primitive or built-in data types.

User-defined types are built by programmers who may want data abstractions that are
specific to his/her own implementation. These are Classes in Python.

Operations, Functions, and Algorithms:

The hardware component that controls the entire computer is known as its central pro-
cessing unit (CPU). Commonly supported instructions are: loading data from main mem-
ory into the CPU; storing data from CPU to the main memory, performing basic arithmetic
operations or checking basic boolean conditions.

Just as data types can be built-in or user-defined, operations are also built-in or user-defined.
In addition, there are control structures which determine when other instructions are
executed or repeated (eg. if-elif-else, for-loops, while-loops).

Algorithms:

A step-by-step procedure for solving a problem or accomplishing some end especially by a

computer is called, an algorithm.



e Example: Find the greatest common divisor (ged) of two positive natural numbers.
e Here is a flow-chart — discuss this algorithm.

Yes

FIGURE 1.1: Flowchart for an algorithm that computes the ged of two integers.

e Here a flow-chart of the Euclid’s algorithm for computing the ged of two non-negative
integers, both non-zero. Go through this procedure for at least two concrete examples.

Yes

FIGURE 1.2: Euclid's algorithm for computing the gcd of integers u and v.



High-Level Programming Languages:

Every piece of software is executed by the computer’s CPU.

The CPU provides core support for the most primitive data types (eg. integers, floats) and
instructions (eg. addition).

Each CPY has its own programming language called, the machine language.

Because a machine language supports only the most basic data types and operations, it is
often described as a low-level programming language.

Software is typically developed with high-level programming languages.

The computer’s hardware only understands the low-level language. A programmer programs
in a high-level language and creates one or mote text files that are called source code.

In order to be executed, that high-level source code gets translated into equivalent low-level
instructions.

These translators are in two forms: compilers and interpreters.

A compiler takes the entire original code and translates it into a low-level program known
as an executable. This executable can then be run directly by the computer.

An interpreter proceeds piecewise, translating an instruction, executing it, then translating
the next instruction, and so on.

There are hundreds of high-level programming languages. Some of the most commonly used
ones: Ada, C, C++, C#,Cobol, Fortran, Java, etc.,.

Each language has its own syntax and semantics.

The syntax of a language is the precise set of rules regarding how character, words, and
punctuation should be used.

A compiler or interpreter reports a syntax error if your code is not formatted according
to the rules of the language you use.

The semantics mean the underlying meaning of statements written in your code.

If a code is written which is syntactically correct, but does not produce the desired result,
then most likely there is a semantic error. For instance, if you want the quotient when 12 is
divided by 5, you should type in 12//5 rather than 12/5 (what is the difference?).

Types of Errors:

Syntax Error: Try the following on your Python shell:

print (” Hello)
Compare it with

print (" Hello.”)

print ("How are you?)

Runtime Error: Here, the syntax is correct but the interpreter is unable to run your code

to completion. For example:
print (1/0)

Logical Error: Here, the syntax is correct, and the interpreter is able to run your code to
completion, but you made a logical error at some point. For example,

print ("2+2 +107)



4

e Logical errors are the hardest to find because it is the author of the code who is responsible
for the error. Python will find its own errors, but the author of the code will have to find
his/her own errors.

e Please do the following now:

e Sign up on codelab.

REGISTRATION (FOR STUDENTS):

1) Go to www.turingscraft.com

2) Click " Register for CodeLab” and follow the instructions.

3) When prompted, enter the Section Access Code: UNAB-26799-HSGP-39

e If you wish to use your home computers, download Python 3.7 from www.python.org. You
will see versions for various Operating Systems. Choose the appropriate installer. Run the
installer and click through the prompts (default options are fine). The application "IDLE”
will be installed by default.

e After installation you can run IDLE by clicking:

Start — All Programs — Python 3.7 — IDLE (Python GUI)
Or, if you are on Mac, go to
Applications — Python 3.7 — IDLE

e Try IDLE. Our lab computers have IDLE set up.

e An easy but limited option is Brython. Check out, https://brython.info/tests/editor.html

e Another option is to use jupyter: Check out, https://jupyter.org/install

e Sign up for Dropbox at https://www.dropbox.com.

(Do not use https://www.dropbox.com/business — this one requires payment).
e We will be using Dropbox for homework and test submissions. Create a folder ”Spring2019-

CSI32-Assignments-FirstName-LastName” and share it with uma.iyer@bcc.cuny.edu



e The Object-Oriented Paradigm:

e Object Oriented Programming (OOP) is the process of modeling data and operations in a
paired form, rather than as separate entities.

e Objects of the same class share a common encoding of their underlying data representation
and support a common set of operations.

e A single object from a given class is termed, an instance of that class.

e Internally, each instance is represented by one or more pieces of data, called attributes, or
data members, or fields, or instance variables.

e For instance, jane = Person(’F’, 25, 32000), is an assignment where jane is assigned an
instance of the Person class. This object possibly has instance variables gender (jane.gender
="F’), age (jane.age = 25), anninc (the annual income, jane.anninc = 32000).

e Note, jen = Person(’F’, 25, 32000), is another assignment, where jen is assigned an instance
of the Person class. Note, a new object is created when we invoke the constructor Person
again even when the attributes may be identical.

e Taken together, the attribute values of a particular instance comprise the state informa-
tion. Note that, over time, the state information may change.

e The operations suported by instances of a class are known as methods, or actions, be-
haviors, or member functions.

e For instance, jane.vote(), jen.info(), jane.addincome(2000), or jen.addage(3) are various
methods with or without parameters.

e Collectively, the attributes and methods of an instance are called its members.

e Note that objects can interact with other objects. Say, in addition to the Person class, we
also had a Dog class.

e Here is a sequence diagram demonstrating interactions between jane and spot (an instance

of the Dog class). Note that jane is the caller and spot is the callee.

jane : Person spot : Dog
sit( }-;r
st - - - - - - - - - — - - - - - = o L
lieDown( ) L
s - - - - - - - — - - - - - - = 4 ||
rollQver( )
[ — - - - m e e e e m - = L

e The vertical line drawn down from the label represents the chronological lifespan of that
object.

e Each solid arrow represents the invocation of a method, oriented from the caller to the callee.

e When a method is called, we say that the flow of control is passed from the caller to the
callee.At that time, the caller waits until the callee completes the action.



6

e A white rectangle on the callee’s side denotes the duration of time when tat action is being
performed. At its conclusion, the flow of control is passed back to the caller, as diagrammed
with a dashed line in our figure.

e Here is another sequence diagram:

jane : Person spot : Dog

fetch(slippers)

o
-

redSlippers
.*. _________________

e This represents calling a method with a parameter. Presumably, spot.fetch(slippers) returns
a value.

e The overall agreement regarding the expected parameters and return value for a method is
called its signature.

e Some methods do not cause any change in the object’s current state, but are used by
the caller to request information about that state. Such methods are commonly termed
accessors or inspectors and necessitate the use of a return value. Example, jane.getage()

e A method that affects the state of the callee is termed a mutator. For example, jane.addage(3).

e Some methods are neither accessors nor mutators. For instance, spot.fetch(slippers) pre-
sumably does not change the values of instance variables of spot.

e The Design of a Television Class:

e An object from the Television class is an instance of this class.

e When an object is created, the system sets aside a particular chunk of memory for storing
the attributes values that represent the state of the new instance. Some attributes do
not change (example, brand and model of a television), while some other attributes are
changeable (example, volume and channel).

e The desired behaviors of a television object must include volumeUp, volumeDown, mute,
channelUp, channelDown, setChannel to a number etc.,.

e Here is a Television class diagram:

Television
brand volume
model muted
powerQOn channel

prevChan

togglePower( ) channelUp( )
volumeUp( ) channelDown( )
volumeDown( ) setChannel(number)
toggleMute( ) jumpPrevChan( )

e Note that toggleMute does not simply set volume to zero. The mute button when pressed
twice, should return volume to what it was before the TV got muted. Thus, the attribute
muted is set either to True or False, while toggleMute method reverse the setting for the

muted attribute.



e We will return to this example later in the course.

e The Design of a Student Registration System:

e Note that the Television class was self contained. Typically though, we have interactions
between objects from various classes.

e For example, here are classes where various objects are expected to interact: Student, De-
partment, Course, Professor, Schedule, Transcript, and Major.

e There are relationships between these objects. For instance, a Course has. teacher, a
Schedule has courses.

e Here is a sequence diagram for invocation of bob.enroll(cs102). Note, bob.enroll(cs102) in

turn triggers bobSch.addCourse(cs102). The former is completed only after the latter is

reutrned.
alice : Professor bob : Student bobSch : Schedule
enrolics102) addCourse(cs102)
True | e m m m e e o
-‘ ________

e In reality, the picture might be more complicated. For instance, here is a refined sequence

diagram for invocation of bob.enroll(cs102):

alice : Professor bob : Student cs102 : Course bobSch : Schedule

enroll{cs1 02) l requestSeat(bob)

-




e Here is a sequence diagram with more steps (more realistic):

alice : Professor bob : Student ¢s102 : Course bobSch : Schedule

enroll(cs102) _L getNumHours( )

hasTaken(cs101)

requestSeal(bob]h

-

False

add(bob)

T

e Class Hierarchies and Inheritance:

e As we start the modeling of different classes, we should consider how those classes compare

to one another.

e By identifying commonalities, we can organize a class hierarchy.

e Here are class diagrams for Student and Professor classes.

name name
phoneNumber phone Number
birthdate birthdate
curSchedule curSchedule
advisor department
transcript office
declaredMajor officeHours
getName( ) getName( )
getPhone( ) getPhone( )
setPhone(number) setPhone(number)
getAge( ) getAge( )
getMajor( ) getOffice( )
declareMajor(major) selOffice(room)
enroll(course) getDepartment( )
drop(course) getOfficeHours( )
getGrade(course) addHours(time)
assignGrade(course, grade) removeHours(time)
hasTaken(course) assignGrade(course, student, grade)
checkGraduation( )

getGpal )




9

e Now here is a hierarchy showing Student and Professor classes derived from Person class:

Person
name phoneNumber
birthdate curSchedule
getName( ) getPhone( )
getAge( ) setPhone(number)

Student

advisor
transcript
declaredMajor

getMajor( )
declareMajor{major)
enroll(course)

drop(course)
getGrade(course)
assignGrade(course, grade)
hasTaken(course)

Professor

department
office
officeHours

getOffice( )

setOffice(room)

getDepartment( )

getOfficeHours( )

addHours(time)

removeHours(time)
assignGrade(course, student, grade)

checkGraduation( )
getGpa( )

Note that the Person class is a more generic class than Student and Professor classes, based
on their commonalities.

When modeling the Student class relative to thePerson class, a Student instance inherits
all of the attributes and methods of the Person class. Similarly, the Professor class inherits
from Person and then additional attributes and methods are specified.

The Person class is the parent class or the base class of Student class (and Professor
class).

The Student class (or the Professor class) is the child class or subclass of Person class.
The relationship between a parent and child class is often termed an is-a relationship, in
that every Student is a Person, but the converse is not true. Every Professor is a Person,
but the converse is not true.

Notice the difference between an is-a relationship and has-a relationship. A Student has
a Transcript, a Course has a Professor (no inheritance is implied). In a has-a relationship
a class has attributes that are instances of another class.

A drawing package:

We consider the design of a system for creating and displaying a variety of graphical objects.
Start our design with a generic Drawable class.

While we expect to be able to create ¢ = Circle(Point(5,5), 3), we do not expect to create
d = Drawable(...).

Such a class that is designed to serve as a parent class in our inheritance hierarchy, unifying
the common traits and behaviors, is known as an abstract class.



10

e The design of our Drawable class is given here (what do you expect the attributes and
methods to mean?):

depth transformation referencePoint
move(dx, dy) rotate(angle) getReferencePoint( )
moveTo(x, y) scale(factor) adjustReference(dx, dy)
getDepth( ) flip(angle) draw()
setDepth(depth) clone( )

e Note that within drawable objects, some are fillable and some not. Some drawable objects
have no shape (example texts) and some have shapes. There are many such considerations
one has to think about before we create our hierarchy. It helps to write down the design
structure before classes are built.



24 Chapter 1

Cornerstones of Computing

Drawable

depth

transformation

referencePoint

move(dx, dy)

rotate(angle)

getReferencePoint( )

moveTo(X, y) scale(factor) adjustReference(dx, dy)
getDepth() flip(angle) draw( )
setDepth(depth) clone()
I |
Text Shape
message fontColor borderColor
fontsize borderWidth

getMessage( )

getFontColor( )

getBorderColor( )

setMessage(message) setFontColor(color) setBorderColor(color)
getFontSize( ) draw( ) getBorderWidth( )
setFontSize(fontsize) setBorderWidth(width)
| |
Segment FillableShape
start end fillColor

getStart( )

setPoints(startPt, endPt)

getFillColor( )

getEnd() draw( ) A
|
Polygon Rectangle
points width height
addPoint(point, index)  deletePoint(index) getWidth() getHeight( )
setPoint(point, index) clearPoints( ) setWidth(width)  setHeight(height)
getPoint(index) getNumberOfPoints( ) draw( )
draw( )
|
Circle Square
radius
getRadius( ) draw( ) getSize() setSize(s)
setRadius(radius)

FIGURE 1.13: A proposed hierarchy of drawable objects.

setFillColor(color)




2. UNIFIED MODELING LANGUAGE (UML)

e The Unified Modeling Language (UML) is a standard visual modeling language in-
tended to be used for modeling business and similar processes, and analysis, design, and
implementation of software-based systems.

e UML is a common language for business analysts, software architects and developers used
to describe, specify, design, and document existing or new business processes, structure and
behavior of artifacts of software systems.

e UML is a way of visualizing a software program using a collection of diagrams.

e The notation has evolved from the work of Grady Booch, James Rumbaugh, Ivar Jacobson,
and the Rational Software Corporation to be used for object-oriented design.

e [t has since been extended to cover a wider variety of software engineering projects.

e Today, UML is accepted by the Object Management Group (OMG) as the standard for
modeling software development.

e The current UML standards call for 13 different types of diagrams, classified into two distinct
groups:

e Structural UML Diagrams (or the Static View): Structure diagrams emphasize the
things that must be present in the system being modeled. Here we have the following:

(1) Class diagram

(2) Package diagram

(3) Object diagram

(4) Component diagram

(5) Composite structure diagram
(6) Deployment diagram

e Behavioral UML Diagrams (or the Dynamic View): Behavior diagrams emphasize
what must happen in the system being modeled. Here we have the following:

(1) Activity diagram

(2) Sequence diagram

(3) Use case diagram

(4) State diagram

(5)

(6)

(7)

6) Interaction overview diagram

Communication diagram

7) Timing diagram
e To learn more about UML refer to
https://www.smartdraw.com/uml-diagram/
https://www.uml-diagrams.org/
https://en.wikipedia.org/wiki/Unified_Modeling_Language
e In our course we will learn to draw the most basic forms of Class diagram, Activity dia-
gram, Sequence diagram, and State diagram. We will use Dia Diagram Editor to draw
these diagrams. Please download Dia from http://dia-installer.de/download /index.html for

your home computer.

12



13

e Class Diagram

e A class diagram is a static structure diagram that describes the structure of a system by
showing the system’s classes, their attributes, operations (methods), and the relationships
among objects.

e A class is represented by a rectangle containing three compartments:

The top compartment contains the name of the class. It is printed in bold and centered,
and the first letter is capitalized.

The middle compartment contains the attributes of the class. They are left-aligned and
the first letter is lowercase. The attributes have specific visibility (Public, Private, Protected,
Package).

The bottom compartment contains the operations the class can execute. They are also
left-aligned and the first letter is lowercase. Methods are also assigned visibility.

e Here is a template of a class:

Class Name

+publicattribute

-privateattribute

#protectedattribute
~packageattribute
underlinedattribute

+publicmethod()

-privatemethod()

#protectedmethod()
~packagemethod()

e Visibility: Public visibility means the attribute can be accessed from everywhere. Private
attribiutes can be accessed only from within the class. Protected attributes can be accessed
by the class and its children classes, while Package or Default attributes can be accessed by
any class within the package of your class.

e For a concrete example:

IdentityCard

+lastName : str
+firstName : str
-date0OfBirth : datetime
+address : str
+idNumber : int

+getFullName()
-getBirthDate()
+getAddress()
+getIdNumber()
+changelLastName(lname:str)
+changeFirstName(fname:str)
+changeAddress (address:str)




14

e Inheritance is denoted by a hollow arrow starting from a child class to its parent class.

e Here is a concrete example:

IdentityCard

+lastName : str

+firstName : str
-date0OfBirth : datetime
+address : str

+1idNumber : int
+getFullName()
-getBirthDate()
+getAddress()
+getIdNumber()
+changelLastName(lname:str)
+changeFirstName(fname:str)
+changeAddress (address:str)

I |
DriversLicense Passport

+bloodType: str +place0fBirth : str
+organDonor: str +nationality : str

+needGlasses() -getDeparture()
+getEntry()

e As an example, pretend that you are a business owner with some employees and clients.

e Design an abstract class Person, with some basic attributes and methods.

Now design two child classes, Employee, and Client with their respective attributes and
methods.

Draw a UML diagram to represent these interactions.



15

e Sequence Diagram

e A sequence diagram (or an event diagram or event scenario) is a visual depiction of interac-
tions (methods) between objects.

e Vertical lines (lifelines) are drawn under each object involved in the interaction. Horizontal
arrows represent the messages exchanged between them, in the order in which they occur.

e Here is a simple example:

jane:Customer janeCart:Cart

add("milk’)
T ————— True} _ _ _ - _

|
|
|
|
: remove({ milk’)

€ mmm o m == (True} _ _ _ ____

e Now, draw a sequence diagram depicting the interaction between three objects jane: Employee,
mika:Client, and mikaOrder:Order.

(1) Jane asks Mika for Mika’s order.

(2) Mika adds to her order a salad.

(3) Mika’s order returns True.

(4) Mika adds to her order a wine.

(5) Mika’s order asks for proof of age.

(6

(7

(8) Mika adds juice to her order.

(

9) Mika gives order to Jane.

Mika does not have a proof of age.

Mika’s order returns False.

)
)
)
)
)
)
)
)



16

e Activity Diagram
e Activity diagrams are graphical representations of workflows (or flowcharts) of stepwise
activities and actions, with support for choice, iteration, and concurrency.
e In an activity diagram,
ellipses represent actions;
diamonds represent decisions;
a black circle represents the start (initial node);
an encircled black circle represents the end (final node);
bars represent the start (split) or end (join) of concurrent activities;
rectangles represent objects, classes.
e Here is an activity diagram to find the ged of two positive integers using the inefficient

guessing approach:

|

W posithve integers

Y
l guess = min(u,v)

ulbguess == 0

- ——— QueEss = guess - 1

e Draw an activity diagram to find the ged of two positive integers using Euclid’s algorithm.



17

e State Diagram

e A state diagram shows the behavior of classes in response to external stimuli.

e A state diagram describes the behavior of a single object in response to a series of events in
a system.

e A state diagram is also sometimes known as State Chart, or State Machine, or State Tran-
sition Diagram.

e In general, state diagrams are studied for an entire system, or a subsystem or one particular
object.

e A state diagram has three important building blocks: State, Event (which triggers an action
or a transition), Transition.

e The State is the status of the system or object at the given time. States may also have
activities or actions within themselves.

e The Event is the trigger which causes the state to change. This event could be internal or
external.

e Transition is the change in state.

e Notations:

e Initial State: This is denoted by a solid filled in circle. Initial state is a pseudo-state. Its
purpose is to signify the position from where the diagram starts. There may or may not be
a transition to transition from this initial state to the first system state.

e State: This is represented by a rectangle with smoothened vertices (rounded corners). The
name of the state is written inside, on the top. For instance, an activity is an operation that
the object has to perform when it is in a given state.

e Transition: This is represented by a simple arrow, starting from the source state and
pointed towards the transitioned new state. Each transition is labeled by an event or a
trigger resulting in an action. The notation used here is Event/Action. Sometimes, there is
a guard condition. This guard condition controls whether the action is performed or not.
The condition is written in brackets [ |.

e Final State: This is denoted by a solid filled in circle with a concentric circle around it.
Transitioning to this state represents the completion of the state diagram.

State Transition Diagram: Notations

Initial State

event(attr.)[cond]/ ( — tSta5e2 1
entry/ action
@ > do/ activity event/action3

actionl / _
exit/ actiond

Final State



18

e State diagrams are often confused with activity diagrams or flowcharts. Note, state machine
performs actions in response to events. Flowcharts do not need explicit events. Secondly, a
flowchart illustrates the processes that are executed in the system. A state diagram shows
the actual changes in state (not the processes or commands that created those changes).

More Notations:

Simple State

( State 1 State with internal activities
Ldo;’ activitieslmethodsJ

> Transition
. Initial State

@ Final State

Synchronization

Fork

Join

0 Decision point

e Note, all synchronization bars must be paired, so that all the forks eventually join and come

back to one transition.



19

e Here is a short example: State Transition Diagram for a Shopping Cart.

Add Item/incrementCount
[itemCount <=15]

? 1

Add Item/setCount(1) r

[ initialize | litemCount<=15] Open 1
do/ t rt >| entry/ addFirstitem
w do/ incrementCount

[itemCoupt=16]

®

e Here is an example that you could try:

e Processing Order:

e The first state of the order is “Unpaid”.

e We go through a Decision Point which allows us three options: “100% Cash paid”, “100 %
Card paid”, a fork (going through “50% Cash paid”, and “50% Card paid”).

e The three above options (fork goes through synchronization bars to join) lead to “Paid”
state.

e Do not forget the initial and final states.



3. BUILT-IN PYTHON CLASSES (LIST, STR) AND NUMERIC TYPES (INT, LONG, FLOAT)
(SECTIONS 2.2, 2.3, 2.4, 2.5)

e We recall a built-in Python class, the list.
e An empty list is constructed using the constructor of the list class. Consider the following

assignment statement:
groceries = list ()

e Notice that the list you have created is an empty list. The construction of a new object
from a given class is called instantiation.

e The word groceries is the identifier — it is the name. An identifier must consist of letters,
digits, or underscore characters, yet a digit cannot be the first character of an identifier.

e The identifiers are case sensitive. Further, keywords of Python cannot be used as identifiers.

e An assignment statement is used to assign a label to an object. Here is the result of the

[ groceries |

assignment statement:

(a) (b)

FIGURE 2.1: The steps in the execution of the groceries = list( ) statement: (a) creation
of an empty list instance, and (b) the assignment of identifier groceries to the newly
created object.

e To see how our list looks like, type in
groceries

e Now we can start populating our list, groceries using the append method. Note how an

object method is called:

groceries .append ( ‘bread )
groceries .append ( ‘milk ")

groceries .append ( ‘cheese ")

e Now see how our list groceries looks like.
e What happens if you try again

groceries .append ( ‘bread’)
e Note that there is a more convenient, a literal form to instantiate a list as:
groceries2=[‘bread’, ‘milk’, ‘cheese ’, ‘bread ’]

e Now build any list(s) you like, and implement every method given on the next page:

20



42 Chapter 2

Getting Started in Python

Behaviors that modify an existing list (i.e., mutators)

data.append(val)

Appends val to the end of the list.

data.insert(i, val)

Inserts val following the first i elements of the list.

data.extend(otherlist)

Adds the contents of otherlist to the end of this list.

data.remove(val)

Removes the earliest occurrence of val found in the list.

data.pop( ) Removes and returns the last element of the list.
data.pop(i) Removes and returns the element with index i.
data[i] = val Replaces the element at index i with given val.

data.reverse( )

Reverses the order of the list’s elements.

data.sort( )

Sorts the list into increasing order.

Behaviors that return information about an existing list (i.e., accessors)

len(data) Returns the current length of the list.
datali] Returns the element at index i.
val in data Returns True if the list contains val, False otherwise.

data.count(val)

Counts the number of occurrences of val in the list.

data.index(val)

Returns the index of the earliest occurrence of val.

data.index(val, start)

Returns the index of the earliest occurrence of val that can be
found starting at index start.

data.index(val, start, stop)

Returns the index of the earliest occurrence of val that can be
found starting at index start, yet prior to stop.

dataA == dataB

Returns True if contents are pairwise identical, False otherwise.

dataA != dataB

Returns True if contents not pairwise identical, False otherwise.

dataA < dataB

Returns True if dataA is lexicographically less than dataB, False
otherwise.

Behaviors that generate a new list as a result

data[start : stop]

Returns a new list that is a “slice” of the original, including
elements from index start, up to but not including index stop.

data[start : stop : step]

Returns a new list that is a “slice” of the original, including
elements from index start, taking steps of the indicated size,
stopping before reaching or passing index stop.

dataA + dataB

Generates a third list that includes all elements of dataA
followed by all elements of dataB.

data » k

Generates a new list equivalent to k consecutive copies of data
(i.e., data + data + ... + data).

FIGURE 2.2: Selected list behaviors, for prototypical instances data, dataA, and dataB.




22

e Try the following and see what happens (explain the result):

mylist = [3,2,14,5,6,2]
mylist = mylist.sort ()

mylist

e Try the following and see what happens (explain the result):

groceries = [‘milk’, ‘bread’, f‘cereal ’]
groceries = groceries.sort ()
groceries
groceries
— list
str str str
'milk’ 'bread’ 'cereal'’
list
str str str
'bread’ 'cereal 'milk’
None

FIGURE 2.3: A before-and-after view of the command groceries = groceries.sort( ).

e Please watch out for such unexpected results when you go through the list-methods given

on the previous page.



23

e Other Sequence Classes: Strings and Tuples.

e Notice, lists are mutable objects. They can change in place.

e Examples of immutable classes: str class (the string class), and the tuple class.

e The str class is designed for sequences of characters.

e A tuple class is an immutable version of the list class. It represents a sequence of arbitrary
objects, yet a sequence that cannot be altered.

e Although list, str, and tuple are three distinct classes, they support many of the same
operations. For instance, data[i] retrieves the element at index i.

e Such a generic syntax is called polymorphic.

e The constructor for the string class is invoked as str() which creates an empty string. Note,
a string is immutable. So we cannot populate a string.

e So, we create a string object using literal form. For example:

knockknockjoke = "Knock Knock \n Who’s there? \n Banana ...”

e Do you see why double-quotes were used in the example above?

e Strings can be compared to each other; keep in mind that strings are case sensitive.

e ‘Hello’ == ‘hello’” will return False.

e String inequalities are <, >, <=, >= based on lexicographical order. Note, though uppercase
letters come before smaller case letters. Thus, ‘Z’ < ‘a’.

e On the next couple of pages we list several string methods. Before we do that, what do you
think is the outcome of the following? Why?

person = ‘Alice’
person = person.lower ()
person
person person

str str str

{a) (b}

FIGURE 2.4: A before-and-after look at the command person = person.lower( ).

e Now construct a few strings, and implement every method from the next two pages:



56 Chapter2

Getting Started in Python

Behaviors that return information about the existing string s

len(s) Returns the current length of the string.
si] Returns the character at index i.
patternin s Returns True if the given pattern occurs as substring of s, False

otherwise.

s.count(pattern)

Returns the number of distinct occurrences of pattern within s.

s.find(pattern)

Returns the index starting the leftmost occurrence of pattern
within s; if pattern is not found, returns —1.

s.find(pattern, start)

Returns the index starting the leftmost occurrence of pattern found at
or after index start within s; if no such pattern is found, returns —1.

s.rfind(pattern)

Returns the index starting the rightmost occurrence of pattern
within s; if pattern is not found, returns —1.

s.rfind(pattern, start)

Returns the index starting the rightmost occurrence of pattern found
at or after index start within s; if no such pattern is found, returns
—1.

s.index(pattern)

Same as s.find(pattern) except causes ValueError if not found.

s.index(pattern, start)

Same as s.find(pattern, start) except causes ValueError if not found.

s.rindex(pattern)

Same as s.rfind(pattern) except causes ValueError if not found.

s.rindex(pattern, start)

Same as s.rfind(pattern, start) except causes ValueError if not found.

s.startswith(pattern)

Returns True if s starts with the pattern, False otherwise.

s.endswith(pattern)

Returns True if s ends with the pattern, False otherwise.

s.isalpha() Returns True if all characters are alphabetic, False otherwise.

s.isdigit( ) Returns True if all characters are digits, False otherwise.

s.isspace( ) Returns True if all characters are whitespace, False otherwise.

s.islower( ) Returns True if all alphabetic characters are lowercase, False
otherwise.

s.isupper() Returns True if all alphabetic characters are uppercase, False
otherwise.

s==t Returns True if strings are identical, False otherwise.

sl=t Returns True if strings are not identical, False otherwise.

s<t Returns True if string s is alphabetized before t, False otherwise.

FIGURE 2.5: Selected behaviors supported by Python’s str class (continued on next

page).




Section 2.3 Other Sequence Classes: str and tuple 57

Behaviors that generate a new string as a result

s.capitalize( )

Returns a capitalized version of the original string.

s.lower( )

Returns an entirely lowercase version of original.

s.upper( )

Returns an entirely uppercase version of original.

s.center(width)

Returns a new string of the specified width containing characters of the
original centered within it.

s.ljust(width)

Returns a new string of the specified width containing characters of the
original left justified within it.

s.rjust(width)

Returns a new string of the specified width containing characters of the
original right justified within it.

s.replace(old, new)

Returns a copy of s, with every occurrence of the substring old replaced
with new.

s.strip()

Returns a copy of s with leading and trailing whitespace removed.

s.strip(chars)

Returns a copy of s with as many leading and trailing characters from
the string chars removed.

s[start:stop]

Returns a new string that is a “slice” of the original, including characters
of original from index start, up to but not including index stop.

s[start:stop:step]

Returns a new string that is a “slice” of the original, including characters
of original from index start, taking steps of of the indicated size,
continuing up to but not including index stop.

s+t Generates a third string that is the concatenation of the characters of s
followed by the characters of t.

s+k Generates a new string equivalent to k consecutive copies of s
(equivalentto s + s + ... + S).

Behaviors that convert between strings and lists of strings

s.split( ) Returns a list of strings obtained by splitting s into pieces that were
separated by whitespace.

s.split(sep) Returns a list of strings obtained by splitting s into pieces that were
separated by sep.

s.join(stringSeq) Returns a string that is a concatenation of all elements of stringSeq with

a copy of s inserted between each pair.

FIGURE 2.5 (continuation): Selected behaviors supported by Python’s str class.



26

e Tuples:

e A tuple is an immutable sequence of objects.

e Because tuples are immutable, Python can implement them more efficiently than the corre-
sponding lists and need only support a subset of the behaviors afforded to lists.

e The literal form for tuples uses enclosing parentheses, with commas separating individual

elements:
person = (‘Firstname’, ‘Lastname’, ‘Profession’)

e Tuples support all the nonmutative behaviors of lists that wee summarized in Figure 2.2
with the exception of count and index.

e Construct a few tuples and implement every tuple method from Figure 2.2

e Numeric Types: int, long, and float:

e There are four different primitive types for storing numbers: int, long, float, and complex.

e There is a maximum magnitude for a value stored as an int, although this limit depends
upon the underlying computer architecture.

e For integer values that have maginitude beyond that limit, Python supports a long class
that can perfectly represent integers with arbitrarily large magnitudes (although with a
more complicated internal encoding).

e Python automatically converts from the use of into long when necessary.

e Floating-point representation is used for real numbers which are integers. In Python, these
are stored using a class named float. Note, the literal 3.0 belongs to the float class even
though it has not fractional part

e We will not work much with complex numbers.

e Here are selected operators supported by Python’s numeric types:

Syntax Semantics

ER Returns the sum of the two numbers.

Xy Returns the difference between the two numbers.

Xy Returns the product of the two numbers,

2y Returns the result of a true division” of % divided by y.

Xy Returns the integral quotient of ® divided by y.

X0y Returns the remainder of an integer division of x divided by y.
Kowey Returns x¥; also available as pow(x,y).

—x Returns the negated number.

abs(x) Returns the absolute value of the number,

X == Returns True if % and y are equal. False otherwise.

xl=y Returns True if % is not equal to y, False otherwise.

ey Returns True if % is less than y. False otherwise.

K=y Returns True if = is less than or equal to y. False otherwise.
A=y Returns True if = is greater than y, False otherwise.

K==y Returns True if % is greater than or equal 1oy, False otherwise.
empi(x, y) | Retumns —1if <y Oif x=y. and 1 if x> y.

FIGURE 2.6: Selected operators supported by Python's numeric types.

e Note, // represents integer division and % represents the modulo operator.



27

These numeric types are immutable. A typical command age = age + 1 does not alter the
value of the original object; it creates a new object.

int int @

38 38 39

int

(a) (b}

FIGURE 2.7: A before-and-after look at the command age = age + 1.

Type Conversions:

Converting information from one data type to another is called casting.

Try the following conversion commands appropriately:

int, float, round, str

A second notion of conversion between text and numbers involves the low-level encoding of
text characters.

Each character is stored in memory as an integer, using ASCII (American Standard Code
for Information Interchange which is a 7-bit character set for 128 characters) or Unicode (a
much larger character set — www.unicode.org).

The function ord(character) returns the integer code for the chosen character.

The function chr(integer) converts the code value to the corresponding character.
Remember ‘Z’ < ‘a’. Find their respective ordinals.

We can convert a string to a list of characters using list(string).

Note, the parameter in the list() constructor can be another list or a tuple.

Likewise, the tuple() constructor can be used to create a tuple based on the contents of an
existing tuple, list or string.

Try these various conversions using concrete examples.



4. EXPRESSIONS, CALLING FUNCTIONS (SECTIONS 2.6, 2.7, 2.8)
e We have seen member functions of a class:

object .method (parameters)
#For example:

circle .draw (window)

math . sqrt (25)

e We have also seen pure functions; that is, functions which are not formally methods from

a class.

function (parameters)
#For example:

chr (37)

ord(” )

int (3.14)

e Here is a table of some commonly used built-in function. Try every one of these with

various parameters (think numeric, string, lists, tuples types).

Sample Syntax Semantics

range(stop) Returns list of integers from 0 up to but not including stop.
range(start, stop) Returns list of integers from start up to but not including stop.
range(start, stop, step) | Returns list of integers from start up to but not including stop.
len(sequence) Returns the number of elements of the sequence.

abs(number) Returns the absolute value of the number.

pow(x, y) Returns x¥.

round(number) Returns a float with integral value closest to the number.
ord(char) Returns the integer alphabet code for the given character.
chr(code) Returns the character having the given integer alphabet code.
min{a, b, ¢, ...) Returns the “smallest” of the given parameters.
min{sequence) Returns the “smallest” item in the sequence.

max(a, b, ¢, ...) Returns the “largest” of the given parameters.

max(sequence) Returns the “largest”™ item in the sequence.

sum(sequence) Returns the sum of the given sequence of numbers.
sorted(sequence) Returns a copy of the given sequence that is sorted.”

FIGURE 2.8: Several commonly used built-in functions.

“Introduced in version 2.4 of Python.

28



29

e Python Modules:

e There are hundreds of useful tools other than built-in functions which have been written by
developers of Python.

e These tools are placed into libraries, called modules, that can be individually loaded as
needed.

e In order to use the tools from a particular library, we need to import that library.

import library

library . function (parameters)
#For example:

import math

math. sqrt (25)

import random

random . random ()
e You may also selectively import a few functions or all the functions from a library:

from library import functionl , function2
functionl (parameters)
function2 (parameters)

from library2 import x #Ilmport all (except internal) functions

#For example:

from math import x

sqrt (25)

pi

from random import randrange

randrange (2,25)

e We can obtain information regarding a library with the command help(library) after import-
ing the said library. Here are some commonly used libraries.

Name Overview
math Various mathematical constants and functions (e.g., pi, sqrt, sin, cos, tan, log).
random Classes and functions used to support randomization of data according to various

distributions {e_g.. randint, sample. shuffle, uniform}.

time Various functions to manipulate time (e.g., sleep, time).

datetime | Classes and function to manipulate dates and times (e.g.. time, date, datetime

classes).
re Support for string matching with regular expressions.
os Support for interactions with the operating system.
sys Values and functions involving the Python interpreter itself.

FIGURE 2.9: Several commonly used modules.



e Here are some concrete examples:

import math
math.sqrt (25)

math . pi

math. sin (math.pi /2)
math . tan (3xmath. pi/4)
math. factorial (6)
math. floor (5.239)
math. ceil (5.239)

import random
random . random ()
random . randrange (4,20 ,3)

random . uniform (4,20)

import time

30

time . time () #Number of seconds since 12:00 am, Janl, 1970 (epoch)

time.localtime (time.time () ) #Structured local time

print ('Hello ")
time . sleep (5)

print (’Good morning’)

import datetime
datetime . datetime .now () #..... microseconds?
datetime.date.today ()

import re

xx='Hello, how are you?’
yy="May I have some water?’
zz="gibberish .blah’

re. findall (r’"\w+’  xx)

re. findall (r’"\w+’,yy)

re. findall (r’"\w+’ ,z2)

import os

os.getcwd ()

os.chdir(”c:\ Users\(username)\Desktop”)
os.path.expanduser(’~/Desktop/’)



31

e Expressions:

e We have seen expressions such as 14+ 5+ 3, or 14 4+ 15 — 2, or 14 — 15+ 2.

e You need to know order of operations or precedence to evaluate expressions.

e Note, addition and subtraction have equal precedence, and are left-associative. Likewise,
multiplication and division have equal precedence, and are left-associative. On the other
hand, exponentiation is right-associative. That is, 4 * %3 % %2 = 43" = 4 % (3 % %2) = 43",

e We portray the evaluation order graphically using a hierarchical evaluation tree. For

example:

2 3

FIGURE 2.10: An evaluation tree demonstrating the order of operations for the expression
1+2+3.

fullname +
+ lastName
firstName LI

FIGURE 2.11: An evaluation tree demonstrating the order of operations for the expression
fullName = firstName + ' ' + lastName.

e Note that the assignment operator (=) has the lowest precedence. This is why
fullName = firstName + ‘° + lastName is equivalent to
fullName = ((firstName + *’) + lastName).
e Boolean Expressions and the bool Class:
e The literals True and False are instances of the class bool.
e The term bool is named after the mathematician George Boole who pioneered the study of
many logical properties.

e There are three core logical operators: not (this is unary), (and) (binary), or (binary).



e Here is the truth table for these boolean operators:

X y notx | xandy | xory | x==y | xl=y
False | False || True | False | False | True | False
False | True True | False | True | False | True
True | False || False | False | True | False | True
True | True || False | True True | True | False

FIGURE 2.12: Truth table for the common boolean operators. Given the values of x
and y shown in the left two columns, the remaining columns show the resulting value of

subsequent expressions.

e Note that the or is an inclusive or.

32

e The exclusive or relies on x! = y (that is, both x and y cannot simultaneously be True).

e Some compound boolean expressions can be chained: For example,

3 <z and x < 8 is equivalent to 3 < x < 8.
e Calling Functions from Within Expressions:
e Here is an example: len(groceries) > 15 and ‘milk’ in groceries

e Here is an evaluation tree for this expression:

groceries

FIGURE 2.13: An evaluation tree demonstrating the order of operations for the expression

and

len(groceries) > 15 and 'milk' in groceries.

y

groceries

e Note that when multiple functions calls are used in the same expression, they are typically

evaluated from left to right. For example, consider the following and give their output:

song = ‘With a Moo Moo Here And a Moo Moo There’

song.split () [5]

song.lower () .count(‘t’)

myList = song.lower().split ()

myList.insert (myList.index (‘moo’) +2, ‘quack’)

myList



5. LISTS AND FOR LOOPS (SECTIONS 4.1, 4.5)

e The order in which commands are executed by a program is its flow of control.

e By default, statements are executed in the order in which they are given.

e A different execution order can be specified using control structures.

e The for loop is one such control structure.

e The repetition of a series of steps for each item of a sequence is called iteration.

e A for loop always begins with the syntax for identifier in sequence: followed by a block of
code we call the body of the loop.

for identifier in sequence :

body

FIGURE 4.1: General form of a for loop.

| for person in guests:
| print person

e Note, in the above example, person is the loop variable. The loop variable name is expected
to be meaningful.

e The sequence in the above example is guests. It can be a sequence of elements, usually a
list, string, or tuple.

e The first line ends with a colon (:) to designate the forthcoming body.

e The body is indented.

e Here is a concrete example and its diagram:

guests = [‘Carol’, ‘Alice’, ‘Bob’]

for person in guests:

print (‘Hello my name is’

(ouess )

, person)

list

person

str

'Careol’ 'Alice’

str ’ sir

'Bob'

list

str str sir

'Careol’ 'Alice’ 'Bob’

list

person

'Carol’ 'Alice’ 'Bob’

FIGURE 4.2: The assignment of person during three iterations of a for loop.

33



34

e A for loop can technically iterate upon an empty sequence, the body of the loop is never
executed; there are no elements.

e Here is another example:

balance = 0
transactions = [200,—50,100]
for entry in transactions:
balance = balance + entry. #Can also be written, balance 4= entry

print (‘Your balance is’, balance) #Not indented

trar

T list
balance
int [ int int int
200 ‘ 50 100 0
transacti
T list
(o) b
int int int int
200 50 100 200
T list
int int int int
200 50 100 150
[ transacti
T list
entr balance |
int int int int
200 50 100 250

e Since the print statement above is not indented, it is not part of the body of the for loop.
In other words, the print statement is implemented after the for loop is completed.

e Note that we can use the for loop in an interactive session with the interpreter also.

e To get out of the for loop, we need to hit ‘Enter’ twice.

e What is the output of the following code?

for count in range(10,0,—1):
print (count)
print (‘Blastoff!”)

e What is the output of the following code? (This technique is index-based loop)

groceries = [‘milk’, ‘cheese’, ‘bread’ , ‘cereal ’]
for position in range(len(groceries)):
label = str(l+position)+‘. ’

print (label4+groceries [position])



35

What is the output of the following code?
guests = [‘Carol’, ‘Alice’, ‘Bob’]
for person in guests:
person = person.lower ()
guests
Now compare with the output of the following code:
guests = [‘Carol’, ‘Alice’, ‘Bob’]
for i in range(len(guests)):
guests [1] = guests|[i].lower ()
guests

Nested Loops:
The technique of using one control structure within the body of another is called nesting.

For example,

for chapter in (‘17,°27): #Outer Loop
print ( ‘Chapter ’+chapter)
for section in (‘a’,‘b’,‘c’): #Inner Loop
print (‘Section "+chapter+section)
print ( ‘Appendix )
List Comprehension:
Consider the following piece of a code:
auxiliary = []
for person in guests:

auxiliary .append(person.lower())

auxialary

This is an accumulator approach. We start with an empty list, and then populate it using
a for loop.

Python supports a simpler syntax for such tasks known as list comprehension.
auxiliary = []

auxiliary = [person.lower () for person in guests]

auxialary

In general, list comprehension follows the syntax

result = [expression for identifier in sequence]

In fact, there is a more general form of list comprehension using condition

result = [expression for identifier in sequence if condition|
For example,

deposits = [entry for entry in transactions if entry > 0]



6. WHILE LOOPS, DEFINING FUNCTIONS (SECTIONS 5.1, 5.2, 5.4)

e The while loop is a control structure which is used when a programmer needs greater
flexibility than is offered by the for loop.

e The for loop requires a pre-existing sequence of objects. The while loop is used when such
a sequence is not available in advance.

e The general syntax for the while loop is

while condition:

body

e For example, in an interactive game, we could have the following code

response = input(” Shall we play a game? )

while response.lower() in (‘y’,‘yes’):
#...code for playing a game
response = input(”Would you like to play again? 7)
e Here is the flow chart for the while loop:

| —
~uil-

False True

l

FIGURE 5.1: Semantics of a while loop.

e Here is an algorithm to find the GCD of two positive integers.

u = int (input(” Enter first positive integer: 7))
v = int (input(” Enter second positive integer: 7))
guess = min(u, V)

while (u % guess >0) or (v % guess >0):

guess —= 1.

print (" The ged is”, guess)

36



37
e The following is the more efficient Euclid’s algorithm:

u = int (input(” Enter first positive integer: 7))

v = int (input (” Enter second positive integer: 7))

print (" The ged is”, u)

e In the following code, a non-empty string is interpreted as the boolean value True:

guests = []
name = input(” Enter a name (blank to end): )
while name:

guests .append (name)

name = input(” Enter a name (blank to end): 7)

print (f”You entered {len(guests)} guests.”)

e The loop above is a post-test loop. It is also a loop and a half. We can avoid repeating the
command for reading a name with the following pre-test loop (that is, the body of the loop
is forced to be executed at least once):

guests = []
name = ’fake’
while name:
name = input(” Enter a name (blank to end): 7)
if name:
guests .append (name)

print (f”You entered {len(guests)} guests.”)

e In the loop above, while we have avoided repeating the command for reading a name, we
have repeated the check whether the name is blank. The following code removes the extra
blank entry at the end:

guests = []

name = ’fake’

while name:
name = input(” Enter a name (blank to end): 7)
guests .append (name)

guests.pop ()
print (f”You entered {len(guests)} guests.”)



38
e Here is another example:

number = 0

while not (1 <= number <= 10):
number = int (input (” Enter a number from 1 to 10: 7))
if not (1 <= number <= 10):

print (” Your number must be from 1 to 10. 7)

e Infinite Loops:
e Here is an example of an infinite loop:

while True:
print (" Hello”)

e Here are pieces of code one of which involves an infinite loop:
i=0
while 1 < 11:
print (i, 1ix%x%2)

#Here is the second one
i=0
while 1 < 11:
print (i, ix%x2)
i+=1
e To manually force the interpreter to stop the execution of an infinite loop is typically done
by entering the control-c key stroke.
e Functions:
e Functions can serve as the ultimate control structure.
e A function allows a series of complicated instructions to be encapsulated and then subse-
quently used as a single high-level operation.
e For example, suppose we want to design and implement a function that locates the maximum-
length string from a sequence of strings. Say, we want to implement this function in the
following fashion:

ingredients = [‘carbonated water’, ‘caramel color ’,
‘phosphoric acid’, ‘sodium saccharin’, ‘potassium benzoate’,
‘natural flavors’, ‘citric acid’, ‘caffeine ’,
‘potassium citrate >, ‘aspartame’, ‘dimethylpolysiloxane ’]
concern = maxLength(ingredients) #calling our function

print (concern)



39

e Note that mazLength() is not a built-in pure Python function, nor is a list method. So, we

define this function:

def maxLength(stringSeq):
longSoFar = 7’ #the longest string so far is the empty string
for entry in stringSeq:
if len(entry) > len(longSoFar):
longSoFar = entry

return longSoFar

e Note the syntax for defining functions. We start with def functionName(parameters).
In our case, there is only one parameter, a list or tuple of strings. Notice also that this
function has to return something (in our case, the entry with the maximum length). If the
definition of a function does not have a return statement, then it returns an object None.

list

FIGURE 5.2: The parameter is identified as ingredients from the context of the caller, yet
as stringSeq within the context of the function body.

concern | longSoFar

str

'dimethylpolysiloxane'

FIGURE 5.3: The mechanism for passing a return value is similar to that for a parameter.
Upon return, the caller's identifier concern is associated with the object identified internally
as longSoFar.

: maxLength( [’ carbonated water',..])

-

concern = maxLength(ingredients) -
™ -~-=~_ .

’ - return longSoFar

'dimethylpolysiloxane'

FIGURE 5.4: Flow of control for a function call.

e Parameters: Note, in our case, stringSeq is the formal parameter while ingredients is
the actual parameter. Sometimes a function does not take any parameters. In that case
we use empty parentheses () in the definition and calling of the said function.

e Each time a function is called, the system assigns the identifier we chose as a formal param-
eter to the actual parameter indicated by the caller. The code in the body of the function
uses the formal parameter to identify the underlying piece of information.

e Body: The body of the function is indented after the def statement. In our example, the
identifier longSoFar has local scope since it cannot be directly accessed by any block of
code other than the body of the function; it is created solely for our use in processing the



40

current function call. In other words, if we have another longSoFar outside the definition of
the function maxLength, then the two variables do not interfere.

Return value: The function body ends with return longSoFar. Although the local
identifier longSoFar will cease to exist as the function ends, the underlying object will be
available to the caller.

Sometimes the return command is executed elsewhere within the body of the function (for
example, within a conditional). In this case, the execution of the function immediately ends
with any specified value passed back to the caller. Sometimes we may use a return statement
without any subsequent value. In this case, the execution of the function without returning
any formal value to the caller, and the special value None object is returned.

Flow of Control: Calling a function is a form of a control statement. Parameters are
sent to the function and the moment the caller invokes the function, control is passed to
the body of the function. Some function calls may take more time to complete than others.
Sometimes, a function may get stuck in an infinite loop. The control returns to the caller
after the function is completed.

More generally, we can nest function calls just as we nest other control structures. For
instance, consider the following diagram of the flow of control:

song( ) #first verse chorus( )
/_—-r .
chorus( ) -

.‘. ________
song() chorus( )
N~ chours( ) ;_____
N chorus( )
~_. | chorus()
~ - - T = -

FIGURE 5.5: Flow of control for nested function calls.

Optional Parameters: Sometimes we can define functions with optional parameters. In
this case, a caller can choose to send a value for such a parameter, but otherwise a default
value is substituted. For example,

def countdown(start=10, end =1):
for count in range(start, end—1, —1):

print (count)
The function countdown can be called in the following ways

countdown (30, 5) #clearly stating the parameters;

(30,
countdown () #here the default parameters of 10,1 are used;
countdown (50) #here, the first parameter is 50

while the second parameter is the default of 1.

It is also possible to define functions for which some parameters have default values and
others do not. Build various examples.



41

Case Study: Computing the Square Root
While the math library has a sqrt() function, we will try Newton’s method to define our
own sqrt() function. We go through several improvements in the process.
We start with a guess square-root.
Note, guess * guess = number is equivalent to guess = number/guess.

Here is a first attempt:

def sqrtA (number):
guess = 1.0
while guess != number/guess:
guess = (guess + number/guess)/2.0
#improving our guess by using average

return guess

This code will get into an infinite loop because we can keep improving our guess, since most
square-roots are irrational.

Here is an improvement using fixed number of iterations:

def sqrtB (number):
guess = 1.0
for trial in range(100):
#we are going to improve our guess 100 times
guess = (guess + number/guess)/2.0
#improving our guess by using average

return guess

While this approach works better, sometimes an exact square root is found within a few
iterations, then the program continues for the rest of the iterations unnecessarily.
So here is another approach where the iterations continue until the gap is small (as in an

allowableError):

def sqrtC (number, allowableError = 0.000001):
guess = 1.0
while abs(guess — number/guess) > allowableError:
guess = (guess + number/guess)/2.0
#improving our guess by using average

return guess

This function can get into an infinite loop if the caller passed 0 as an allowableError. Even

in the default value, we can end up in an infinite loop.



e Let us try one more option:
def sqrtD (number):
prevGuess 0.0

guess = min (1.0, number)

while prevGuess < guess:

prevGuess = guess

avg = (guess + number/guess)/2.0

guess = min(avg, number/avg)
return guess

42



7. CONDITIONAL STATEMENTS (SECTION 4.4)

¢ Conditional statement, or more commonly, an if statement is another control structure.

e The syntax for an if statement is:

if condtion:
body

e The flow chart for an if statement is given:

False tion True

FIGURE 4.11: Flowchart for an if statement.

e For example:

dinner = input(”What would you like for dinner?”)

if dinner = ’pizza ’:

print (" Great!”)
(77

print ("I love pepperoni and black olives.”)

e The condition: Note, the condition can be a boolean expression. For example:

if len(groceries)>15 or ’milk’ in groceries:

print ("Go to the grocery store”)

#Here is another example — see the difference?
if len(groceries)>15 and ’'milk’ in groceries:

print ("Go to the grocery store”)

e The body: The body of the loop is indented after the if statement. The body could contain

another conditional statement, resulting in nested if-statements. For example,

if partyStarted:
if person in guests:

print (" Welcome” )

43



44
e The above example is equivalent to the following compound conditional:

if partyStarted and person in guests:
print (" Welcome”)

e Python uses a technique known as short circuiting, where a partial evaluation of a boolean
expression suffices as soon as the outcome can be properly determined.

x and y: if x is False, the result is False. If x is True, then the result of (x and y) is y.
x or y: If x is True, the result is True. If x is False, the result of (x or y) is y.
e Here is an example of nested control structures:
balance = 0
for entry in transactions:
balance += entry

if balance < 0:

print (" Overdraft warning”)
e if-else Syntax: In the simplest form,

if condition :

bodyl #Notice the indentation

else: #No indentation , aligned with if
body?2 #Indentation

e Here is the flow-chart:

¢ False ition True

body2 body1

T

FIGURE 4.13: Flowchart for an if-else statement.

e Here is an example:

depositTotal = 0

withdrawalTotal = 0

for entry in transactions:
if entry >0:

depositTotal += entry
else:

withdrawalTotal += entry



o if-elif-else Syntax: The syntax is as follows:

if conditionl:

bodyl #Notice the indentation

elif condition2: #No indentation , aligned with
body?2 #Indentation

elif conditiond: #No indentation , aligned with
body3 #Indentation

else: #No indentation , aligned with

default —body  #Indentation
e Here is a concrete example:

daynumber = int (input(” Enter an integer between 1
if daynumber =— 1:
day = "Monday”
elif daynumber — 2:
day = "Tuesday”
elif daynumber = 3:
day = ”"Wednesday”
elif daynumber = 4:
day = ”Thursday”
elif daynumber = 5:
day = "Friday”
elif daynumber = 6:
day = ”Saturday”
else:

day = " Sunday”

45

and 7 (inclusive):



8. DESIGNING AND IMPLEMENTING CLASSES — A FRACTION CLASS (SECTIONS 6.4)
e [t is best to learn how to design classes by examples. Here is an example:

class EmployeeFirstDraft:
def info(self):
print (”Name of the employee is unknown”)
print (" The annual income of the employee is unknown”)

print (" The employee joined our company on unknown.”)
e Run this module, and then try

ted = EmployeeFirstDraft ()
ted.info ()

holly = EmployeeFirstDraft ()
holly .info ()

e Here is a better class.

class Employee:
def __init__(self, firstName, middleName, lastName

dateOfJoining , annuallncome):

self. _firstName = firstName

self. _middleName = middleName

self. _lastName = lastName

self. _dateOfJoining = dateOfJoining
self . _annuallncome = annuallncome

def getName(self):
name = self._firstName+’ '+self._middleName+’ ’4self._lastName

return name

def getDateOfJoining(self):

return self._dateOfJoining

def getAnnuallncome (self):

return self._annuallncome

def newAnnuallncome(self):
new = (1.05)*self. _annuallncome

return new

def info(self):

print ("Name of this employee is”, self.getName()+’.")
46



47

print (” Last year his/her annual income was $7, str(self.getAnnuallncome (

print (" This year his/her annual income is $”, str(self.newAnnuallncome ()

))
)+ .

I

b

print (" The employee joined our company on”, str(self.getDateOfJoining())+".")

Now try the following:

ted = Employee(” Ted”, ”"Matthew”, ”"Bush”, 7”1 January 2019”7, 45000)
ted.info ()

The keyword class declares the definition of a new class. The subsequent identifier Employee is
our choice for naming our class (or EmployeeFirstDraft in the first case). The colon marks the
beginning of the block of code that serves as the body of the class definition.

The first method is named __init__. Informally, this method is referred to as the constructor.. Its
primary purpose is to establish initial values for the attributes of the newly created object. The
implicit parameter self serves internally to identify the parameter instance being constructor.
Other methods are defined following the same syntax as definitions of functions. Some methods
are accessors — these access the state information of the instance. Some methods are mutators—
these change the state information of the instance.

A Fraction Class:. We develop an immutable Fraction class. Our internal representation of
a fraction consists of two numbers, a numerator and a denominator. We wish to ensure that all
fractions are reduced to lowest terms and stored with a nonnegative denominator. A fraction with
denominator of zero is viewed arithmetically as an undefined value. We will solely use special
methods.

We would like to create instances of this class such as Fraction(16,9), Fraction(3), Fraction() to

16 3 .
represent 91 and 0 respectively.

# Program: Fraction.py
from gcd import gcd
class Fraction:

def __init__(self, numerator=0, denominator=1):

if denominator = 0: # fraction is undefined
self . numer = 0
self._denom = 0

else:
factor = gcd( abs(numerator), abs(denominator) )

if denominator < 0: # want to divide through by mnegated

factor

factor = —factor
self. _numer = numerator // factor
self._denom = denominator // factor

it Arithmetic Methods —AAAblbiy
def __add__(self, other):

)
)



return Fraction(self. numer % other._denom + self._denom x other.
_numer ,

self . _denom x other._denom)

def __sub__(self, other):
return Fraction(self. numer * other._denom — self._denom % other.
_numer ,

self. _denom * other._denom)

def __mul__(self, other):
return Fraction(self. numer * other._numer, self._denom % other.

~denom)

def __truediv__(self, other):
return Fraction(self. numer * other._denom, self._denom % other.
_numer)
A Comparison Methods #4447
def __1t__(self, other):

return self._numer * other._denom < self._denom * other._numer

def __eq__(self, other):

return self. numer = other. numer and self. _denom = other._denom
wpAE Type Conversion Methods —#HAHAA4A
def __float__(self):

return float(self. numer) / self._denom

def __int__(self):

return int (float(self))  # convert to float, then truncate

def __str__(self):
if self._denom = 0:
return ’Undefined’
elif self._denom = 1:
return str(self._numer)
else:

return str(self. numer) + '/’ + str(self._denom)

48



9. ERROR CHECKING AND EXCEPTIONS (SECTION 5.5)

We have encountered various errors in the past. Example, NameFError, TypeError, ValueEr-

Tor.

e Each of these types of standard errors is a subclass of a general Exception class.

e Exceptions are used to report scenarios that are out of the ordinary. The result of an
exception is to immediately stop the current executing code.

e For instance, if your code involves the following:

number = int (input (” Enter a number from 1 to 10: 7))
e You would like to make certain that the user inputs a number from 1 to 10.

number = 0
while not (1 <= number <= 10):
try:
number = int (input (” Enter a number from 1 to 10: 7))
if not (1 <= number <= 10):
print (" Your number must be from 1 to 10.”)
except ValueError:

print (" That is not a valid integer.”)
e This approach works well, but does not know what to do with other kind of errors.

number = 0
while not (1 <= number <= 10):
try:
number = int (input (” Enter a number from 1 to 10: 7))
if not (1 <= number <= 10):
print (" Your number must be from 1 to 10.”)
except ValueError:
print (" That is not a valid integer.”)
except EOFError:
print (”What are you doing?”)
except:
print (" Looks like you do not know what an integer is.”)
print (" That is okay. We will choose.”)

number = 7

¢ Raising an Exception

e We can also raise exceptions from within our own code. For example:

def sqrtE (number):
if number <O:
raise ValueError(” sqrt (number): number is negative”)

prevGuess = 0.0
49



50

guess = min (1.0, number)

while prevGuess < guess:
prevGuess = guess
avg = (guess + number/guess) / 2.0
guess = min(avg, number/avg)

return guess

e When raising an exception, we technically create an instance of the appropriate error class,
providing a descriptive error message as a parameter to its constructor.

e Type Checking

e A ValueError happens when a function or method obtains the appropriate type of argument
but yet, an inappropriate one. Like in our example, the square-root of a negative number.
A TypeError occurs when a function or method obtains an argument of the inappropriate
type.

e We want to be able to check that the data sent matches the expected type.

e Our preferred tool for type checking is a built-in function, isinstance. The syntax of isin-
stance() is

isinstance (object , classinfo)

e Here, classinfo could be a class, type, or tuple of classes and types.
e For instance, isinstance(number, float) checks whether the number is a floating-point value.
e We now improve our square-root function as follows:

def sqrtE (number):
if not (isinstance (number, (int, float))):
raise TypeError(” sqrt (number): number must be numeric”)
if number <O:
raise ValueError (” sqrt (number): number is negative”)
prevGuess = 0.0
guess = min (1.0, number)
while prevGuess < guess:
prevGuess = guess
avg = (guess + number/guess) / 2.0
guess = min(avg, number/avg)

return guess



e Here is another function. What do you think it does?

o

=== - - R L ]

def scaleData(data, factor):
if not isinstance(data, list):
raise TypeError('data must be a list')
for item in data:
if not isinstance(item, (int,float)):
raise TypeError('data items must all be numeric')
if not isinstance(factor, (int float)):
raise TypeEmor(' factor must be numeric')
for i in range(len(data)):
data(i] = factor » datali]

51



10. DESIGN, DOCUMENTATION, UNIT TESTING (SECTIONS 7.2, 7.4, 7.5, 7.6, 7.7)

e Top-Down Design and Bottom-Up Implementation:

e Before we write any portion of a large program we should consider its overall design.

e We need to identify potential classes and the way in which objects from those classes will
interact.

e A starting point is to envision the use of our final product and design a top-level class and
its interface.

e From there we expand our design to include classes that the top-level class will need in order
to perform its tasks.

e We repeat this process until we have designed a collection of individual components that
can be written and tested independently.

e This approach is known as top-down design.

e Once the design is fixed, implementation should start at the lowest level and work up to the
top level.

e This technique is known as bottom-up implementation.

e Every component must be tested thoroughly before moving on to the next higher level.

Design Implementation

ligh—level | High—level

Low-level \ | Low—level

— - -

FIGURE 7.2: A development cycle with a top-down design followed by a bottom-up imple-
mentation.

e The existence of smaller independent pieces is called modularity. One advantage of this
design is that the pieces can be implemented and tested in parallel by a team. Furthermore,
many of the components may have more general value, allowing for code reuse across
multiple portions of the program or in other projects.

e Naming Conventions:

e Recall, an identifier cannot begin with a numeral, cannot have any spaces, and cannot be
among a short ist of reserved keywords. Identifiers are case sensitive.

e A name should be descriptive, clearly suggesting an underlying purpose so as to improve
the overall readability of the code. A thoughtful choice of a name can go along way in
establishing correct intuition.

e Classes: A class name should be a singular noun, and begin with a capital letter. When the
class name involves two or more English words, we concatenate those words while capitalizing
the first letter of each word (e.g. CannonBall).

e Functions: The name of a function, whether stand-alone or a method of a class, should
be a verb and begin with a lowercase letter, but each additional word is capitalized (eg.
jumPrevChannel, getY Coord).

52



53

Data: A data name should be a noun, begin with a lowercase letter, but each additional
word is capitalized. Data name may be singular or plural depending on its usage. Choose
names that clearly indicate what type of data is being stored and how it will be used (eg.
guestList, idNumber).

Parameters: Names of parameters follow the same convention as for data.

The advantage of naming conventions: Following conventions helps us to tell exactly
what a name represents even with limited context.

Formal Documentation: Python Docstrings

Documentation informs another programmer how to properly use your classes and func-
tions, and serves as a formal specification of promised behavior that must be internally
implemented. The expected outward behavior of a class or a function should be well defined
and documented before the actual implementation is written.

The symbol # is used for directly embedding comments within source code. This style of
comment is ignored by the interpreter yet visible to a programmer, making it very valuable
for someone who reads a piece of code.

To access documentation without going into the code, Python supports another style of
documentation using well-placed strings known as docstrings.

These strings are visible within the source code and they are also used to generate documen-
tation seen in the Python interpreter through the use of the help command and to generate
documentation on webpages using a corresponding utility pydoc.

A docstring is technically a string literal that occurs as the very first element within the
body of a class or function.

Triple quote delimiters (7 7 ”) are used since these allow for multiline strings.

A docstring should begin with a brief one line description. If further explanation is war-
ranted, such as the purpose or type of parameters and return value, that information should
be provided after a subsequent blank line within the docstring.

Encapsulation of Implementation Details

The principle of treating internal implementation details of a software component as private
is known as encapsulation.

The primary advantage of encapsulation is that it limits the interdependence between soft-
ware components.

Having a clear designation of the public and private aspects of the component benefits both
the author and the client using the program. For the author, the encapsulation of private
details provides greater flexibility in the development and maintenance of the software. For
the client, the identification of the public portion draws focus to only that which must be
understood to properly use the component.

High-Level Design: The use of encapsulation begins with the creation of the high-level
design for a software project. 1The design of the various public interfaces depends upon the
degree of information sharing that is necessary.

Underscored Names in Python: Python supports the notion of encapsulation through

naming conventions.



54

e If the identifier given to a class, or to a method or attribute of a class, begins with an
alphabetic character that element is presumed to be of public interest.

e To designate something as private, we choose an identifier that begins with a single under-
score character.

e When methods of a class are named with a leading underscore, they are not displayed in
documentation generated by the help command or the pydoc utility.

e When the wildcard form of an import is performed (eg. from cslgraphics import *), only
the public elements of the module are loaded.

e But note, if a user is aware of an underscored name, then they can be directly accessed (eg.
point._xcoord = 5).

e Note that the single underscore naming convention is unrelated to the double underscore
naming used for special methods such as _init__. Also, local variables within a function
body are not typically underscored, as they are already private due to their local scope.

e Data Members: In order to protect the integrity of an object’s state, we generally en-
capsulate all attributes of a class as private, preferring public access through designated
accessors and mutators.

e Private Methods: We can designate certain methods as private by using underscore as
the first character of their names. While the public methods are ones that we expect to
be called by others, private methods are used for our own convenience when implementing
a class; they should only be called from within the remainder of the class. Often these
functions are used to perform some common task for the rest of the class to improve the
overall organization.

e Modules and Unit Testing:

e The source code for a large project is typically split into several files. This helps improve
the organization, supports reuse of code, and allows for different developers to edit different
components with less interference.

e If one class relies upon definitions from a separate file, the latter elements must be imported
into the former before they can be used.

e Another important principle of good software development is to test each individual compo-
nent as it is written. Testing a class individually, instead of as part of the larger program,
is called unit testing. This is the essence of bottom-up implementation.

e With unit testing earlier classes are rendered reasonably error free before being used.

e Python provides a convenient manner for embedding unit tests inside the same file as the

class implementation. The basic format is:

class ClassName:

#implementation here

if __name__ = ’__main__"’
#unit test here

e The conditional allows us to execute commands as part of an isolated unit test, yet to have
those commands ignored when the file is being incorporated into the larger software project.



55

e When a Python program is executed, the flow of control begins with an indicated module.
That top-level module may import other modules along the way.

e Within an individual module, the special variable __name__ serves to identify the context
in which that module is currently being loaded. If the module is the one upon which
the interpreter was initially invoked, this variable will be automatically set to the string
"__main__". Alternatively, if the module is being imported from elsewhere, then __name__ will
be set to this module’s own name.



11. INpuT AND OuTPUT; FILES (SECTIONS 8.1, 8.2, 8.3, 8.4, 8.5)

e Standard Input and Output
e The simplest form for receiving input from a user is through the use of input function:

identifier = input (” Question: 7)

#Or,
identifier = input () #Here, no question is displayed.

e The system waits for the user to type. Once the keys are typed, the user presses the enter
key. The input function returns the string of entered characters, up to but not including the

final newline. Here are a few examples:

color = input (”What is your favorite color?”)

#Or

color = input (”What is your favorite color? [blue] )

if color = 77:
color = "blue”

#Or

color = input (”What is your favorite color? [blue] )

if mnot color: #empty string has boolean value of False
color = "blue”

e The simplest form for generating output is by using the print command. Here are some

simple examples:
print ("I like”, favoriteFruit, "and the number”, myAge)

e By default setting an explicit space is automatically inserted into the output between succes-
sive arguments separated by commas. The print command also generates one final newline
character (” \n’)

e Formatted Strings

e Here are various ways of using string formatting. The following commands will all result

in the same output.

name = " Myteam”

rank = 1

total = 20

print (name+”: ranked”, rank, ”of” total, ”teams.”)

print (f”{name}: ranked {rank} of {total} teams.”)

(
print ("%s: ranked %d of %d teams.”%(name, rank, total))
(
print ("{0}: ranked {1} of {2} teams.”.format(name, rank, total))

56



57

e In the above formatting, % d represents integer (even though the term is decimal); % s
represents string or list, tuple, % i can also be used for integer, %f for floating-point, %% to
print % symbol.

e Note % 4d causes an integer to be printed with a minimum of four characters. If the integer
is less than 4 digits long, then it is right justified by default. Check what happens with the
following (some are in fact syntactically incorrect — which ones?):

7 Give me $%10d .” %3456)

”Give me $%—10d .” %3456)

7 Give me $%010d .”%3456)

print (” Give me $%10d .” %3456789876543212)
" Give me $%10f .” %3456)

7 Give me $%10.2f .”"%3456)

" Give me $%10d .” %3456/1312)

print (” Give me $%10f.” %3456/1312)

" Give me $%10.2f .7 %3456/1312)

”Hello %10s.” %’ Amy’)

”Hello %—10s.” %’ Amy’)

7 Give me ${0}.”.format (3456))
”Give me ${0:10}.”.format (3456))
7Give me ${0:>10}.”.format (3456))
7 Give me ${0:<10}.”.format (3456))
7 Give me ${0:710}.”.format (3456))
7 Give me ${0:10.2}.”.format (3456))
7 Give me ${0:10.2}.” . format (3456.45678))

7 Give me ${0:10.2f}.” . format (3456.45678))
7 Give me ${0:0.2f}.” . format (3456.45678))

7 Give me ${0:10.20f}.”.format (3456.45678))

e Working with files

e Python supports a built-in class named open to manipulate files on the computer. The con-
structor for Python’s open requires a string parameter, identifying the underlying filename
on the computer system.

myfile = open(” filename.extension”)

e By default, a newly instantiated file object provides read-only access to an existing file.
e If no file exists with the specified name or if such a file is unreadable, the call to the

constructor results in an IOError.



58

e Here are several modes of opening files.

myfile = open(” filename.extension”, "r”) #Read mode
myfile = open(” filename.extension”, "w”) #(Over)Write mode
myfile = open(” filename .extension”, "a”) #Append mode

e Here are some methods of Python’s file class. Construct a file, and play with every com-
mand you see in this table.

Syntax Semantics

close( ) Disconnects the file object from the associated file (saving the underlying
file if necessary)

flushy( ) Flushes buffer of written characters. saving to the underlying file.

read( ) Returns a sinng representing the (remaiming ) contents of the file.
read(size) Returns a string representing the specified number of bytes next in the file.
readline( ) Returns a sinng representing the next line of the file.

readlines( ) Returns a list of strings representing the remaining lines of the file.
write(s) Writes the given string to the file. No newline is added.

writelines(seq) | Wntes each of the sinngs to the file. No newlines are added.

for line in f Iterates through the file~f, one line at a time.

FIGURE 8.2: Selected behaviors of Python's file class.

e Note, the flush() method saves an open file, while the close() method saves and closes
the file.

e The write() method is slightly different from the print(string, file = filename) approach.
While print() command automatically converts nonstring arguments to strings, the write()
method does not. Also note, write() does not end in a newline.

filename . write (3.14) #this will not work
filename . write(str(3.14)) #this will work
filename . write ("%5.2f”%3.14) #this will work

e Here are some codes you should try.

#Here is the first code

filename = input(”What is the filename? )
source = open(filename)

text = source.read()

source . close ()

numchars = len (text)

numwords = len (text.split ())

numlines = len (text.split(’\n’"))

7

print (" Number of characters =", numchars)

2

print (" Number of words =", numwords)

7

print (" Number of lines =", numlines)



#Here is the second code
filename = input(”What is the filename? 7)

source = open(filename)

numchars = numwords = numlines = 0
line = source.readline () #Get the first line.
while line: #Note, line has a boolean value
numchars += len(line)
numwords += len (line.split ())

numlines 4= 1
line = source.readline () #Get the next line.

filename . close ()

print (" Number of characters =", numchars)
print (” Number of words =", numwords)
print (” Number of lines =", numlines)

#Here is the third code
filename = input (”What is the filename? 7)

source = open(filename)

numchars = numwords = numlines = 0
for line in source:

numchars += len (line)

numwords += len (line.split ())

numlines += 1

print (" Number of characters =", numchars)
print (" Number of words =", numwords)
print (" Number of lines =", numlines)

59

The input() command receives input from the user, but the string does not end in "\n’
character. On the other hand, the readline() method returns the next line of the file including

any explicit new line character. Now try what happens with the following:

animal = "dog\n’
animal . rstrip ("\n”’)
animal

fruit = ’apple’
fruit.rstrip(’e’)

)

flower = ’rose



60

flower . rstrip (’se’)

e Case Studies Here are some robust functions to open, write, or read files. Understand

every line of the code and implement them.

# Program: FileUtilities.py

7
7

"PPA few wtility functions for opening files.

def openFileReadRobust () :
77?7 Repeatedly prompt user for filename wuntil successfully

200

opening with read access.

Return the newly open file object.

200

source = None
while not source: # still no successfully
opened file
filename = input(’What is the filename? 7)
try:
source = open(filename)

except [OError:
print ( 'Sorry. Unable to open file’, filename)

return source

def openFileWriteRobust (defaultName) :
"77” Repeatedly prompt user for filename wuntil successfully

opening with write access.
Return a newly open file object with write access.

defaultName a suggested filename. This will be offered

within the prompt and
used when the return key is pressed without

specifying another name.

200

writable = None
while not writable: # still no successfully

opened file
prompt = ’What should the output be named [%s]? % defaultName

filename = input(prompt)



if not filename: # user gave blank response
filename = defaultName # try the suggested default
try:
writable = open(filename , ’w’)

except [OError:

Y

print ('Sorry. Unable to write to file’, filename)

return writable

def readWordFile () :

777 O0pen and read a file of words.

Return the list of strings.

The file format is expected to be with one word specified per
line.

print (" About to read list of words from file.”)

wordfile = openFileReadRobust ()

words = list ()
for entry in wordfile:

words . append (entry.rstrip(’\n’))

return words

61



62

e Annotating a File
e We would like to annotate files. That is, a file which looks like

e Here is a program:

from FileUtilities import openFileReadRobust, openFileWriteRobust

print (” This program annotates a file , by adding”)

print (” Line numbers to the left of each line. \n”)

source = openFileReadRobust ()
annotated = openFileWriteRobust ("annotated.txt ’)

#process the file

linenum =1

for line in source:
annotated . write ("%4d %s’%(linenum , line))
linenum += 1

source . close ()

annotated . close ()

print (" The annotation is complete.”)



12. GRAPHICS (SECTIONS 3.1, 3.2, 3.3)

e In this section we work with the wrapper cslgraphics.py designed by the authors of the
book. This package is for developing GUI codes. Refer to the appendix for codes using

TKinter directly.

e First, download csigraphics.py and move it to the folder you are going to work in for

programs involving graphics.
e The Canvas

e We can create a canvas by calling the constructor as follows:

Canvas ()

e By itself, a canvas cannot be interacted with. So, it is better to start with an assignment.

paper = Canvas()

e By default, a newly created canvas is 200 pixels wide and 200 pixels tall, has a white

background, and is titled “Graphics Canvas.” But canvas is mutable:

paper.setBackgroundColor (’skyBlue ")

paper.setWidth (300)
paper.setTitle ("My World”)

e All of this can be achieved by using optional parameters:

paper = Canvas (300, 200, ’blue’, My World")

e Here is an overview of the Canvas class:

Canvas

Canvas(w, h, bgColor, tite, autoRefresh)
getWidth( )

setWidth(w)

getHeight( )

setHeight(h)

getBackgroundColor( )
setBackgroundColor{color)

getTitle( )

setTitle(title)

add(drawable)
remove(drawable)

clear( )

open( )

close( )

saveToFile(flename)
setAutoRefresh(trueOrFalse)
refresh )

wait( )

FIGURE 3.2: Overview of the Canvas class.

e Note, the coordinate system has origin at the top left corner:

63



64

X—axis

y-axis § \_J

FIGURE 3.3: The canvas coordinate system, with the origin at the top left corner.

Every graphical object we place upon a canvas is done so using the coordinates of a key
reference point. For example, the center of a circle.
Here is a way to create a circle object and add it to our canvas.

sun = Circle (30, Point(250,50))
paper.add (sun)
sun.setFillColor (’yellow ")

Note, the Circle() by default is centered at (0,0) and radius 10 pixels. So, we could have
done the following;:

sun = Circle ()

paper .add (sun)
sun.setRadius (30)

sun . move (250,50)
sun.setFillColor (’yellow ")

Square
A square is another example of a FillableShape. By default, a square is 10 x 10 and centered

at (0,0). Other sizes and central points have to be specified as follows:

facade = Square (60, Point(140,130))
facade.setFillColor (’white ”)
paper.add (facade)

We may also resize the size of a square by facade.setSize(90).

Rectangle

By default, a rectangle has width of 20 pixels, a height of 10 pixels, and is centered at the
origin. However, we can specify the width, the height, and the center point, in that order.

chimney = Rectangle (15, 28, Point(155,85))
chimney . setFillColor ("red )
paper.add(chimney)

By default, our fillable objects have black outlines, one pixel wide. One way to make the
boundary disappear is to use the method setBorder Width(0).



65

e Polygon
e The polygon is a fillable object which is built with a sequence of points written in order
(clockwise or counterclockwise) . By default, the polygon’s reference point is its first point.

tree = Polygon(Point (50,80), Point(30,140), Point(70,140))
tree.setFillColor (’darkGreen )
paper.add(tree)

e A polygon can also be built by adding one point at a time.

tree = Polygon ()

tree.addPoint (Point (50,80))
tree.addPoint (Point (30,140))
tree.addPoint (Point (70,140))
tree.setFillColor (’darkGreen )
paper.add(tree)

e Note, the points above have been added in a sequence with index 0, 1, 2, .... Thus, we may
insert a point (tree.setPoint(Point(50,70),0)) or change a point (tree.setPoint(Point(50,70),0))
or delete a point at a certain index (tree.deletePoint(i)).

e Path

e A Path connects points just like a polygon, except, a path does not connect the last point
point to the first, and a path is not fillable. A path supports setBorderColor and set-
BorderWidth methods. For instance,

sunraySW = Path(Point (225,75), Point(210,90))
sunraySW . setBorderColor ("yellow 7)

sunraySW . setBorderWidth (6)

paper .add (sunraySW)

e Colors

e A color is represented behind the scene by what is known as its RGB value. This is a
tuple of three numbers that represent the intensity of red, green, and blue respectively,
using a scale from 0 (no intensity) to 255 (full intensity). For example, 'skyBlue’ is RGB of
(136,206,235).

e Depths

e The relative ordering of conflicting shapes is controlled by an underlying numeric attribute
representing the depth of each drawable object. By default, all objects are assigned a depth
value of 50 and their relative ordering is is arbitrary. However, their depths can be changed
to control the image. The object with a smaller depth is drawn above the object with the
greater depth. So, we draw grass with the greatest depth.

grass = Rectangle (300,80, Point(150,160))
grass.setFillColor (’'green’)
grass.setBorderColor (’green )
grass.setDepth (75)



paper.add(grass)

66



001 O\ WU B~ WM~

[SSIRCS RS ERUS RS R US IR USROS R UL IR UL I (O I NS R NS I O R NS T S NS I NS R N R S R i i e T R e
O 0 AN N PHA RO, OOV TIANNKA WD, OOVUINWNPB WD — O\

102 Chapter 3 Getting Started with Graphics

from cs1graphics import =
paper = Canvas(300, 200, 'skyBlue', 'My World')

sun = Circle(30, Point(250,50))
sun.setFillColor('yellow")
paper.add(sun)

facade = Square(60, Point(140,130))
facade.setFillColor('white")
paper.add(facade)

chimney = Rectangle(15, 28, Point(155,85))
chimney.setFillColor(' red")
chimney.setBorderColor(' red")
paper.add(chimney)

tree = Polygon(Point(50,80), Point(30,140), Point(70,140))
tree.setFillColor('darkGreen")
paper.add(tree)

smoke = Path(Point(155,70), Point(150,65), Point(160,55), Point(155,50))
paper.add(smoke)

sunraySW = Path(Point(225,75), Point(210,90))
sunraySW.setBorderColor('yellow"')
sunraySW.setBorderWidth(6)
paper.add(sunraySW)

sunraySE = Path(Point(275,75), Point(290,90))
sunraySE.setBorderColor('yellow")
sunraySE.setBorderWidth(6)
paper.add(sunraySE)

sunrayNE = Path(Point(275,25), Point(290,10))
sunrayNE.setBorderColor('yellow")
sunrayNE.setBorderWidth(6)
paper.add(sunrayNE)

sunrayNW = Path(Point(225,25), Point(210,10))
sunrayNW.setBorderColor('yellow"')
sunrayNW.setBorderWidth(6)
paper.add(sunrayNW)

FIGURE 3.10: Complete source code for drawing our house (continued on next page).




68

40 |grass = Rectangle(300, 80, Point(150,160))

43 |grass.setDepth(75) # must be behind house and tree
44 | paper.add(grass)

46 |window = Rectangle(15, 20, Point(130,120))
47 | paper.add(window)

48 |window.setFillColor('black")

49 |window.setBorderColor(® red")

50 |window.setBorderWidth(2)

51 |window.setDepth(30)

53 |roof = Polygon(Point{105, 105), Point{175, 105), Point{170.85), Point(110,85))
54 |roof.setFillColor( 'darkgray ")

55 |roof.setDepth(30) # in fror
chimney.setDepth(20) # in fror
57 | paper.add(rocf)

oo
= =
oo

L
=3

FIGURE 3.10 (continuation): Complete source code for drawing our house.

Text and Image classes
The Text class is used for rendering character strings within the drawing area of the canvas.
The syntax is

Text (string , font size =12)
Note, the way to write a text to a canvas object is:

announcement = Text(’This is my announcement’)
announcement . move(100,180)

canvasExample . add (announcement )

The reference point for a text object is the center of the text.
The library cslgraphics also includes an Image class that provides support for using a raw

image loaded from a file. An image object is constructed

mylmage = Image(’lightbulb.gif ’) #Can also be jpg, bmp, tiff)
mylmage . move (100 ,180)

canvasExample . add (myImage)

The reference point for an image object is aligned with the top left corner of the image.
Rotating, Scaling, and Flipping

All Drawable objects can be rotated, scaled, or slipped. The reference point of a shape stays
fixed during the transformation.

Note, there is a method to move the reference point without moving the object. The method
is adjustReference(dz,dy). Note, we may even move the reference point away from the shape
itself. This adjusting of the reference point is useful for the ensuing rotation.



69

e Rotating: The rotate method rotates an object clockwise around the reference point with
the specified angle given in degrees. For example,

diamond = Square (40, Point(100,100))
diamond . rotate (20)

#0Or, change the reference point first
block = Square (40, Point(100,100))
block.adjustReference (—20,20)
block.rotate (20)

——

\\
\\j

FIGURE 3.11: Rotating a square 20° in the clockwise direction. In both diagrams the
original position is drawn with darker border and the resulting position with lighter border.
In the case on the left, the square is rotated about its center point. On the right, the same
square is rotated about its lower left cormer.

e Scaling: All Drawable objects support a method scale that takes a single parameter spec-
ifying a positive multiplicative factor by which the object is to be scaled. Note, if the
parameter is greater than 1, then the object enlarges while if the parameter is less than 1,
then the object shrinks. The reference point remains fixed.

FIGURE 3.12: Scaling a pentagon about two different reference points. In both diagrams
the original position is drawn with darker border and the resulting position with lighter
border. On the left, the pentagon is scaled relative to its center point. On the right, the
pentagon is scaled about the rightmost corner.



70

e Flipping: All Drawable objects support a method flip() which reflects the object about the
vertical line through the reference point. The method flip() also accepts an angle in degrees
as a parameter this rotation the line of reflection.

FIGURE 3.13: Flipping a flag about two different axes of symmetry. In both diagrams the
original position is drawn with darker border and the resulting position with lighter border.
On the left, the flag is flipped about the vertical axes by default with flip( ). The right shows
the result of flip(10).

e Cloning: The Drawable types support a clone() method that returns a brand new copy.
The clone has precisely the same settings as the original object, is not automatically added
to any canvas. Once created, the clone can be manipulated independent of the original. For
example,

otherTree = tree.clone ()
otherTree.move(170,30)
otherTree.scale (1.2)
paper.add(otherTree)

e The next page gives an overview of the Drawable objects.



94 Chapter 3

Getting Started with Graphics

Drawable

depth

transformation

referencePoint

move(dx, dy)
moveTo(X, y)

rotate(angle)
scale(factor)

getReferencePoint( )
adjustReference(dx, dy)

getDepth() flip(angle) wait( )
setDepth(depth) clone()
I | |
Text Shape Layer
message borderColor contents
fontsize borderWidth
fontColor Layer()
getBorderColor( ) add(drawable)
Text(message, fontsize) setBorderColor(color) remove(drawable)
getMessage( ) getBorderWidth( ) clear()
setMessage(message) setBorderWidth(width)
getFontSize( ) 4
setFontSize(fontsize)
getFontColor() | |
setFontColor(color) FillableShape Path
fillColor points
getFillColor( ) Path(pt1, pt2, ...)
setFillColor(color) addPoint(point, index)
ZF setPoint(point, index)
deletePoint(index)
| | getPoint(index)
Circle Rectangle getNumberOfPoints( )
clearPoints( )
radius width
height
Circle(r, centerPt)
getRadius( ) Rectangle(w, h, centerPt) Polygon
setRadius(r) getWidth( )
setWidth(w) points
getHeight( )
setHeight(h) Polygon(pt1, pt2, ...)
addPoint(point, index)
ZF setPoint(point, index)
deletePoint(index)
Square getPoint(index)
getNumberOfPoints( )
clearPoints( )
Square(size, centerPt)
getSize() setSize(s)

FIGURE 3.4: An overview of the Drawable objects.




13. INHERITANCE (SECTIONS 9.1, 9.2, 9.3, 9.4)

e We introduce the concept of inheritance. This is a technique that allows us to define a
new (child) class based upon an existing (parent) class. The child class inherits all of the
members of its parent class, thereby reducing duplication of existing code.

e We typically differentiate a child class from its parent in two was.

e The child may introduce one or more behaviors beyond those that are inherited, thereby
augmenting the parent class.

e A child class may also specialize one or more of the inherited behaviors from the parent.
This specialization is accomplished by providing an alternative definition for the inherited
method, thereby overriding the original definition.

e Note, a child class might specialize certain existing behaviors while introducing others.

e Let us start with an example. First, let us build the Television class.

# Program: Television.py
# Authors: Michael H. Goldwasser
# David Letscher
#
class Television:
def __init__(self  brand,model):
self. _brand = brand

self. _model = model
self . powerOn = False
self . muted = False
self . _volume = 5
self. _channel = 2

self . prevChan = 2

def togglePower(self):

self . _powerOn = not self._powerOn

def toggleMute(self):
if self. _powerOn:

self. muted = not self._muted

def volumeUp(self):
if self. _powerOn:
if self. _volume < 10:
self . _volume 4= 1
self. _muted = False

return self._volume

72



def volumeDown(self):
if self. _powerOn:
if self. _volume > 0:
self. _volume —= 1
self. muted = False

return self._volume

def channelUp(self):
if self. _powerOn:

self . _prevChan =

if self._channel = 99:

self. _channel

self. _channel = 2
else:
self._channel 4= 1

return self._channel

def channelDown(self):
if self. powerOn:
self . _prevChan =
if self._channel = 2:

self. _channel = 99

self. _channel

else:
self. _channel —= 1

return self._channel

def setChannel(self , number):
if self. _powerOn:
if 2 <= number <= 99:
self . prevChan = self. _channel
self. _channel = number

return self. _channel

def jumpPrevChannel(self):
if self. _powerOn:
incoming = self. _channel
self. _channel = self._prevChan

self._prevChan = incoming

return self._channel

def __str__(self):

73

# record the current value

# wrap around to minimum

# record the current value

# wrap around to maximum

# record the current value



74

display = ’'Power setting is currently ’ + str(self._powerOn) +
\n’

display += ’Channel setting is currently ’ + str(self._channel
) +7\n’

display += ’'Volume setting is currently ’ + str(self._volume)
+'\n’

display += 'Mute is currently ' + str(self. _muted)

return display

e Here is a Television class dagram:

Television
brand volume
model muted
powerOn channel

prevChan

togglePower( ) channelUp()
volumeUp( ) channelDown( )
volumeDowni( ) setChannel(number)
toggleMute( ) jumpPrevChan( )

e Augmentation: We wish to design a deluxe version of our television. We wish to add
support for managing a set of so called favorite channels. In particular, we have three new
behaviors in mind:

addToFavorites() - a method that adds the currently viewed channel to the set of
favorites (if not already there);

removeFromFavorites() - a method that removes the currently viewed channel from
the set of favorites (if it is present).

jumpToFavorite() - a method that jumps from the current channel setting to the next
higher channel in the set of favorites. However, if no favorites are numbered higher than the
current channel, it wraps around to the lowest favorite. If there are no favorites at all, the
channel remains unchanged.

e For this we need to import Television class from Television.py. We develop a new class

Deluze TV that uses Television class as its parent. The syntax is as follows:

class DeluxeTV (Television): #Inheritance is indicated by placing

the parent class in parentheses

e With such a declaration, the new child inherits all existing methods of the parent class. We
need to specify the augmented functionality. So, the __init__ method is as follows:

def __init__(self):
Television. __init__(self)

self. _favorites = []

e The state of a deluxe television includes all the attributes from Television, and now an
additional list of favorites.



75

e We then need to add the three functions as specified initially. Here is the entire definition
for the DeluxeTV class.

# Program: DelureTV1.py

# Authors: Michael H. Goldwasser
# David Letscher

#

#

from Television import Television

class DeluxeTV (Television):

"77A television that maintains a set of favorite channels.”””

def __init__(self  brand,model):

777 Creates a new DeluxeTV instance.

The power is initially off, yet when turned on the TV

is tuned to channel 2 with a volume level of 5. The set

of favorite channels is initially empty.

Television. __init__(self ,brand,model) # parent
constructor

self. _favorites = []

def addToFavorites(self):
"77Adds the current channel to the list of favorites,

if not already there.

If power is off, there is no effect.
if self. powerOn and self._channel not in self. _favorites:

self. _favorites.append(self._channel)

def removeFromFavorites(self):
77 Removes the current channel from the list of favorites,

1f present.

If power is off, there is no effect.

NN

if self._powerOn and self._channel in self. _favorites:

self. _favorites.remove(self. _channel)



76

def jumpToFavorite(self):
"7 Jumps to the "next” favorite channel as per the following

rules .

In general, this method jumps from the current channel setting
to the next higher channel which is found in the set of
favorites. However if no favorites are numbered higher than
the current channel, it wraps around to the lowest favorite.

If there are no favorites, the channel remains unchanged.
Returns the resulting channel setting.
If power i1s off, there is no effect.

2000

if self._powerOn and len(self. _favorites)>0:

closest = max(self. _favorites) # a guess

if closest <= self. _channel: # no bigger channel exist
closest = min(self. _favorites) # wrap around to min

else: # let’s try to get closer

for option in self. _favorites:
if self._channel < option < closest:
closest = option # a better choice
self .setChannel (closest) # rely on inherited method

return closest

e Specialization

e One reason that the jumpToFavourite() method is complicated is because the collection of
favorite channels is unsorted within the internal list. This motivates the development of a
new class SortedSet.

e Our SortedSet will maintain a set of elements while ensuring that duplicates are removed
and that the elements are ordered. While the list class is not ideal, it is still useful. So, we
start with

class SortedSet(list):

e Note, we do not need any additional attributes. But we might want to override insert(indez,
object) since it might interfere in the sorting process or introduce duplication. So we have
to define our own insert method.

e We also introduce a new method indezAfter(value) to determine the proper index for in-
serting a new element into a set. This method returns the index of the first element that is
strictly larger than the given parameter. When there is no such value it returns the length
of the entire set.



T

def indexAfter(self, value):
walk = 0
while walk < len(self) and value >= self [walk]:
walk 4= 1

return walk

Notice that the indexAfter method is a public method because it seems useful enough to be
used in other programs. Also note, since our class is inherited from list class, our instance
is a list. So the syntaxes len(self) and self[index| are already defined.

Now, we define insert method:

def insert (self , value):
if value not in self:
place = self.indexAfter (value)

list .insert (self , place, value)

Notice the last line explicitly invokes the parent list.insert.
We also need to override the append method of the list class.

def append(self , object):
self .insert (object) #this is the insert from SortedSet

The insert method above is from SortedSet since the object is specifically from the SortedSet
class. The parent’s methods are only applied in cases where there is no duly named method
explicitly in the native context.

This is an example of the principle of polymorphism and a key to the object-oriented
paradigm. When the caller invokes a method on an object, the actual behavior depends
upon the precise type o f the given object.

Here is a complete SortedSet class which we will need to build a better DeluxeTV class.

# Program: SortedSet.py

# Authors: Michael H. Goldwasser
# David Letscher

class SortedSet(list):

»ny»

Maintains an ordered set of objects (without duplicates).

200

def __init__(self, initial=None):

777 Default constructor creates an empty SortedSet.

If initial sequence is given as parameter, creates
initial configuration wusing those elements, with

duplicates removed.

2”00



list.__init__(self) # calls the parent constructor
if initial:

self .extend(initial)

def indexAfter(self , value):

»»»

Find first index of an element strictly larger than given

value .

If no element is greater than given wvalue, this returns the
length of the set.

» N

walk = 0
while walk < len(self) and value >= self [walk]:
walk += 1

return walk

def insert (self, value):

»»»

Adds given element to the sorted set.

If the wvalue is already in the set, this has no effect.

Otherwise, it is added in the proper location.

value element to be added to the set.
if value not in self: # avoid duplicates
place = self.indexAfter(value)

list .insert (self , place, value) # the parent’s method

def append(self, object):

NN

Identical to insert(object).

NN

self .insert (object)



79

e Here is a second version of DeluxeTV class:

# Program: DeluzeTV2. py

# Authors: Michael H. Goldwasser
# David Letscher

#H

from Television import Television

from SortedSet import SortedSet

class DeluxeTV (Television):

20

Just like a standard television , but with additional

support for maintaining and using a set of favorite channels.

200

def __init__(self  brand,model):

2N

Creates a new Television instance.

The power is initially off. Upon the first time the TV is
turned on, it will be set to channel 2, and a volume level

of 5.

The television maintains a list of favorite channels,

initially empty.

Television. __init__(self ,brand,model) # parent
constructor

self. _favorites = SortedSet ()

def addToFavorites(self):

P

Adds the current channel to the list of favorites, if not
already there.

If power is off, there is no effect.

NN

if self. _powerOn:

self. _favorites.append(self. _channel)

def removeFromFavorites(self):



80
NN

Removes the current channel from the list of favorites,

if present.

If power is off, there is no effect.
if self. powerOn and self._channel in self. _favorites:

self. _favorites.remove(self. _channel)

def jumpToFavorite(self):

20

Jumps to the ’next’ favorite channel as per the following

rules .

In general, this behavior jumps from the current channel
setting to the mnext higher channel which is found in the set
of favorites. However if there are no such higher channels,
it jumps to the owerall minimal favorite. If there are no

favorites at all, this has no effect on the channel setting.
Returns the resulting channel setting.
If power is off, there is no effect.

200

if self._powerOn and len(self. _favorites)>0:

resultIndex = self. _favorites.indexAfter(self. _channel)
if resultlndex = len(self. _favorites):

result = self. _favorites [0] # wrap around
else:

result = self. _favorites[resultlndex|

self.setChannel (result)

return result



81

e Further details

e There are some other behaviors from the list class which could be overridden. For example:

def extend(self, other):
for element in other:

self . insert (element)

e Recall that the extend method of the list class modifies the original list by adding all
elements of the other list to the end. Now the extend method of the SortedSet filters out
duplicates and maintains the sorted order.

e Recall, when we created the SortedSet class , we inherited from the existing list class
by “ class SortedSet(list):” In other words, we relied on the underlying storage mechanism
provided by the list class. The default constructor provided an empty list which by nature
is sorted and without duplicates.

e Now suppose we were to start with an initial list generated from a string; example, list(’hello’).
This list does not result in a sorted set. So, we override __init__ as follows:

def __init__(self, initial=None):
list. __init__(self) #calls the parent constructor
if initial:
self .extend(initial) #this results in a SortedSet list
e Next, note that the __add__ method of the list class is not a mutator. This method creates

and returns a new list that is a composition of two existing lists. This method also needs to
be overridden so as to create SortedSet.

def __add__(self, other):
result = SortedSet(self) F#creates a new copy of self
result . extend (other) #add other elements of this copy

return result

e The list class has its own sort method which is time-consuming and unnecessary for our

SortedSet class. So we do the following;:

def sort(self):
pass. #do nothing

e The list class has two other methods reverse and __setitem__ which break conventions for
the SortedSet class. So, we raise an exception whenever one of these methods is called.
e Now we present definition of the entire SortedSet class.



82

# Program: SortedSetl.py
# Authors: Michael H. Goldwasser
# David Letscher

7
class SortedSet(list):

»»»

Maintains an ordered set of objects (without duplicates).

20

def __init__(self, initial=None):

Py

Default constructor creates an empty SortedSet.

If initial sequence 1is given as parameter, creates
initial configuration wusing those elements, with

duplicates removed.

”»»

list.__init__(self) # calls the parent constructor
if initial:

self .extend(initial)

def indexAfter(self, value):

NN

Find first index of an element strictly larger than

given value.

If no element is greater than given wvalue, this

returns the length of the set.

»»»

walk = 0
while walk < len(self) and value >= self [walk]:
walk +=1

return walk

def insert (self, value):

200

Adds given element to the sorted set.

If the wvalue is already in the set, this has
no effect. Otherwise, it 1s added in the proper



location .
value element to be added to the set.
if value not in self: # avoid duplicates

place = self.indexAfter(value)

list .insert (self , place, value) # the parent’s method

def append(self, object):

NN

Identical to insert(object).

» N

self .insert (object)

def extend (self , other):

P

Ezxtends the set by inserting elements from
the other set

»»»

for element in other:

self.insert (element)

def __add__(self, other):

200

Returns new set which is union of this set
and the other.

P

result = SortedSet(self) # creates new copy of self

result . extend (other) # add other elements to this copy
return result

def sort(self):

NN

This has no effect, as set is already sorted.

2N

pass

def reverse(self):

P

SortedSets cannot be reversed.

83



84

This always raises a RuntimeFError.
20

raise RuntimeError(’SortedSet cannot be reversed’)

def __setitem__(self, index, object):

»»»

Direct manipulation of elements of a SortedSet
1s disallowed .

This always raises a RuntimeError.

2NN

raise RuntimeError(’This syntax not supported by SortedSet’)

e When should inheritance (not) be used
e In the previous example, we noticed that some methods needed to be specialized (example,

insert), some had to be ignored (example, sort), and some had to raise exceptions (example,

reverse, __setitem__).
e There is an alternative way to take advantage of the existing list class without using inher-

itance.
class SortedSet:
def __init__(self):
self. _items = list () #an initial empty list

e The relationship between a parent and child class when using inheritance is an is-a rela-

tioship in that every DeluxeTV is a Television.
e When one class is implemented using an instance variable of another, this is a has-a rela-

tionship.
e We are implementing a SortedSet has a list approach, even though SortedSet is itself not

a list.
e Since we do not inherit from any parent class, we must explicitly provide support for any

behaviors that we want to offer. For example,

def insert (self , value):
if value not in self._items:
place = self.indexAfter(value)

self. _items.insert (place ,value)

e Note that in this version of insert, there is no concept of calling the “parent” version of
insert in this context. Instead, we call self._items.insert to invoke the insert method of the

underlying list attribute.



85

e The advantage of avoiding inheritance is that we do not inherit unnecessary baggage of
methods. However, we do not inherit any of the necessary methods. Thus, we need to

explicitly provide them. Here is the SortedSet class created without using inheritance.

# Program: SortedSet2.py
# Authors: Michael H. Goldwasser
# David Letscher

7
7#

7
class SortedSet:

777 Maintains an ordered set of objects (without duplicates).

»n»

def __init__(self, initial=None):

777 Default constructor creates an empty SortedSet.

If initial sequence is given as parameter, creates initial

configuration wusing those elements, with duplicates remowved.

2”00

self. _items = list ()
if initial:
self.extend(initial) # extend the set (nmot the list)

def indexAfter (self, value):
P77 Find first indexr of an element strictly larger than given

value .

If no element is greater than given value, this returns the
length of the set.

200

walk = 0
while walk < len(self._items) and value >= self._items[walk]:
walk 4= 1

return walk

def insert (self, value):

777 Adds given element to the sorted set.

If the wvalue is already in the set, this has no effect.

Otherwise, it is added in the proper location.



value element to be added to the set.
if value not in self._items:
place = self.indexAfter (value)

self._items.insert (place, value)

def extend (self, other):

"77 EBrtends the set by inserting elements from the other set.

NN

for element in other:

self.insert (element)

def __add__(self, other):

777 Returns new set which is union of this set and the other.

200

result = SortedSet(self) # creates new copy of self
result . extend (other) # add other elements to this
copy

return result

def index(self, value):

»77 Returns indexr of wvalue.

Raises a ValueError if wvalue not found.

200

return self. _items.index (value)

def remove(self, element):
200

"77Remove an element from the sorted set.

self. _items.remove(element)

def pop(self, index=None):

777 Pop element at given index (last by default).

return self. _items.pop(index)

def __contains__(self , element):

"77Determine if the element is in the sorted set.

return element in self._items

def __getitem__(self, index):



87

2

777Get the element of the sorted set at the given index.

return self. _items[index|

def __len__(self):

777 Count the number of elements in the sorted set.

»r»

return len(self. _items)

def __eq__(self, other):

777 Determine if two sets are equivalent.

2NN

return self. _items == other._items

def __1t__(self, other): # lexicographic comparison

return self._items < other._items

def __str__(self):

"77Return a string representation of the sorted set.

20
return str(self. _items)

e Class Hierarchies and cslgraphics

e Suppose we want to draw stars,

FIGURE 9.5: Three instances of the Star class.

e We would like to be able to do the following:

medal = Star(5)
paper .add (medal)

e We use inheritance to avoid recreating everything from scratch.
e Start with

class Star (Polygon):

e Note, a star with n rays is a polygon with 2n vertices. The geometry of a star depends on
both an outer radius, as well as an inner radius. We let the user specify the outer radius

and the ratio between the inner and outer radii.



e Here

B8 =1 Oh Lh ol b —

e Here

=R~ I~ N R A TURY .

is a code:
class Star({Polygon):
def _init__ (self, numRays=5, outerRadius=10, innerRatio=.5, center=Point(0,0)):
Polygon.__init__ (self) # call the parent constructor
top = Point(0, —outerRadius) # top point is directly above the origin

angle = 180.0/ numRays

for i in range(numRays):
self.addPoint(top * (angle « (2 « i))) # outer point
self. addPoint(innerRatio « top * (angle « (2 =i + 1))) # inner point

self.adjustReference(0, outerRadius) # move reference from top point to center
self.move(center.getX( ), center.getY()) # re-center entire star
self._innerRatio = innerRatio # record as an attribute

def setinnerRatio(self, newRatio):
factor = newRatio / self._innerRatio
self._innerRatio = newRatio
for i in range(1, self. getNumberOfPoints( ), 2): # inner points only
self.setPoint(factor « self.getPoint(i), i)

FIGURE 9.6: Our proposed Star class (excluding documentation and unit testing).

88

is a code to use inheritance to create a Square class as a child of a Rectangle class:

class Square(Rectangle):
def init__ (self, size=10, center=None):
Rectangle.__init__ (self. size, size, center)

def setWidth(self, width):
self.setSize(width)

def setHeight(self, height):
self.setSize(height)

def setSize(self, size):
Rectangle.setWidth(self, size) # parent version of this method
Rectangle.setHeight(self, size) # parent version of this method

def getSize(self):
return self getWidth( )

FIGURE 9.7: The actual implementation of the cs1graphics.Square class (documentation
and error checking omitted).



14. STRUCTURAL RECURSION — DRAWING A PYRAMIND (SECTIONS 4.2, 4.3, 11.1)

e DNA to RNA Transcription

e Every organism consists of cells, all multicellular organisms have a cell and a cell nucleus.

e This nucleus contains the DNA, the hereditary material. This DNA is packed into chromo-
somes.

e DNA is short for Deoxyribonucleic acid. DNA is made up from 4 different bases (nu-
cleotides): Adenine (A), Thymine (T), Guanine (G), and Cytosine (C).

e RNA (Ribonucleic Acid) is synthesized in the nucleus and is very similar to DNA. To make
protein from DNA first RNA is made from DNA. This process is called transcription. The
RNA is then used to create proteins.

e RNA also consists of four nucleotides, three of them A, C, and G, and a fourth one Uracil
(U).

e Transcription creates an RNA sequence by matching a complementary base to each original
base in the DNA using

DNA —= RNA

A — u
C — - G
G ——- C
T — A

e We develop a program that asks the user to enter a DNA sequence, and returns the tran-
scribed RNA.
e S0, a DNA sequence “AGGCTA” would be transcribed to “UCCGAU”.

# Program: DNAtoRNA. py
# Authors: Michael H. Goldwasser
# David Letscher

dnaCodes = 'ACGT’
rnaCodes = 'UGCA’

dna = input(’Enter a DNA sequence: )

rnalist = []

for base in dna:
whichPair = dnaCodes.index (base)# index into dnaCodes
rnaletter = rnaCodes|[whichPair| # corresp. index into rnaCodes
rnalist.append(rnaLetter)

rna = '’ .join(rnalist) # join on empty string

print (’Transcribed into RNA:’, rna)

89



90

e In what follows, we are using cs1graphics.py. The instructor will provide you
with alternative TKinter files to build these classes.

e Drawing a Pyramid

e We would like to draw pyramids (first the kind in (a) below and then (b)):

(a) (b)

FIGURE 4.6: Two versions of a pyramid. In (a) each level is a single rectangle; in (b) each
level comprises a series of squares.
e The identifier numLevels stands for number of levels and unitSize represents the height of
each level. Here is the geometric picture for what we want to do:

FIGURE 4.7: Geometric sketch for a 4-level pyramid. The dotted lines mark units in the
coordinate system. The solid rectangles represent the levels of the pyramid, with each
dot highlighting the desired center point for a level.

e Here is a code. Understand this loop:

# Program: pyramidLoop.py

# Authors: Michael H. Goldwasser
# David Letscher

#

from cslgraphics import x

numLevels = 8 # number of levels
unitSize = 12 # the height of one level
screenSize = unitSize * (numLevels + 1)

paper = Canvas(screenSize , screenSize)

centerX = screenSize / 2.0 # same for all levels

# create levels from top to bottom

for level in range(numLevels):



91

width = (level + 1) % unitSize # width varies by level
block = Rectangle(width, unitSize)# height is always unitSize
centerY = (level + 1) % unitSize

block .move(centerX , centerY)

block.setFillColor (’gray’)

paper.add(block)

e Pyramid made of squares

e Here, we use a nested loop to create and position a series of squares that comprise each level.
Note, level k is comprised of (k + 1) squares. All the squares on a given level are centered
with the same y coordinate.

# Program: pyramidNested. py
# Authors: Michael H. Goldwasser
# David Letscher

7
7

from cslgraphics import x

numLevels = 8§ # number of levels
unitSize = 12 # the height of one level
screenSize = unitSize * (numLevels + 1)

paper = Canvas(screenSize , screenSize)

centerX = screenSize / 2.0 # same for all levels

# create levels from top to bottom
for level in range(numLevels):
# all blocks at this level have same y—coordinate
centerY = (level + 1) % unitSize
leftmostX = centerX — unitSize % level / 2.0
for blockCount in range(level + 1):
block = Square(unitSize)
block .move(leftmostX + unitSize % blockCount, centerY)
block.setFillColor (’gray’)
paper.add(block)

e Recursion — The Bull’s Eye

e Another form of repetition is recursion.

e Structural recursion is a natural way to define objects that have one or more (smaller)
instances of the same class as instances. For instance, an 8-level pyramid is a single bottom
level with a 7-level pyramid on top of it. A 7-level pyramid in turn is a single bottom level



92

with a 6-level pyramid on top of it. And so on, until a 1-level pyramid is a single block —
this is the base case.

e Functional recursion occurs when a behavior is expressed using a smaller version of that
same behavior. For instance, a function calls itself recursively.

e A Bullseye Class

e A Bull’s eye is a sequence of concentric circles with alternating colors. In other words, a

bull’s eye is a circle with a smaller bull’s eye positioned at the same center.

FIGURE 11.1: Bullseye instances with 3, 4, and 11 bands respectively.

e To draw a bull’s eye we use structural recursion and develop a Bullseye class.

e Internally, a Bullseye instance maintains two attributes: _outer, which is the outermost
circle, and _rest, which is a reference to another bullseye providing the interior structure.
We allow the user to specify the total number of bands, the overall radius of the bullseye,
and the choice of two colors.

e The constructor accepts four parameters (numBands, radius, primary, secondary) where the
bands alternate in color starting with primary as the outermost band. The case case is
self. rest is set to None.

e The entire implementation is given on the next page.



0NN B W

L2 L2 L W LW L L)L L WK NINDNNNDN /= = === == = =
O 01NN PH WOV IANNPRE WD OOV INWUN R WD~ ONVWY

Section 11.1 A Bullseye Class 363

from cs1graphics import =

class Bullseye(Drawable):

def __init__ (self, numBands, radius, primary="black ', secondary="white"'):

if numBands <= 0:

raise ValueError('Number of bands must be positive')

if radius <= 0:

raise ValueError(' radius must be positive')

Drawable.__init__ (self)
self._outer = Circle(radius)
self._outer.setFillColor(primary)

if numBands == 1:
self. rest = None

# must call parent constructor

else: # create new bullseye with one less band, reduced radius, and inverted colors
innerR = float(radius) » (numBands—1) / numBands
self._rest = Bullseye(numBands—1, innerR, secondary, primary)

def getNumBands(self):
bandcount = 1
if self._rest:
bandcount += self._rest.getNumBands( )
return bandcount

def getRadius(self):
return self._outer.getRadius()

def setColors(self, primary, secondary):
self._outer.setFillColor(primary)
if self._rest:
self._rest.setColors(secondary, primary)

def _draw(self):
self._beginDraw( )
self._outer._draw( )
if self._rest:
self._rest._draw()
self._completeDraw( )

# outer is always there
# still more

# ask the circle

# color inversion
# required protocol for Drawable
# draw the circle

# recursively draw the rest
# required protocol for Drawable

FIGURE 11.2: Complete code for our Bullseye implementation (documentation excluded).




94

e Unfolding a recursion
e Here is a figure to portray the creation of a bullseye instantiated as Bullseye(3,120, ’red’,

‘black’)
Bullseye
Circle
— ™ Circle(120)
outer _ _ ___|
setFillColor(* red’) T O
- -====-=--=-1 Bullseye
T
Bullseye(2, 80, 'black", "red' ;_
_rest |
.‘_ SN ——
T I T
FIGURE 11.3: Top-level trace of Bullseye(3, 120, "red", "black")

e To truly understand recursion, it helps to more carefully trace the complete execution
through a process called unfolding a recursion.

e The next page gives the complete execution. Note, the last case is traced as well, but the
construction algorithm proceeds differently because the desired number of bands is one. An
appropriate outer circle is constructed and colored, but the rest of this bullseye is set to
None.



365

A Bullseye Class

Section 11.1

1
% H : o
|||||||||||||||||||| = e
||||||||||| > 1501 1sal
T (.po7,)i000]10s
|||||||||| “v
Ja1no
~(ov)epuD -
(,xoe1q, “,pa1, ‘o ‘1)akes|ng
EToNTo) |
ofesIng | ML _______ -
[ } -
® T (.¥oe1a.)i000]Ies
IIIIIIIIIIII —
J81no
" (08)aI010 -
(ypox, ‘,oe1q, ‘08 ‘?)ehes|ng
a[olID |
ofesing | L __________ -
. . T (.p=7.)i000]110s
|||||||||| “v
Jalno
(oz1)erpnD -
8lo41D
afes|ng

FIGURE 11.4: Unfolding the recursion Bullseye(3, 120, 'red', 'black"')



e Additional Bullseye methods

96

e Our class supports several additional methods, getNumBands and getRadius method. Note,

getRadius is not recursive; rather this invokes the getRadius method of the Circle instance

(not of another Bullseye instance). This is an example of polymorphism, as both classes

support a getRadius method with different underlying implementations.

move, scale, rotate, clone.

e But, we are responsible for implementing the _draw method to display the bullseye.

e Here is a sequence diagram:

Bullseye

The mutator setColors(primary, secondary) recolors an existing bullseye.

Bullseye

Bullseye

getNumBands( ) IJ;
bt getNumBands( )

getNumBands|( ]__ .

|
| S

FIGURE 11.5: Sequence diagram for the call getNumBands( ).

e Finally, a word of caution: Every recursion must have a base case.

Having inherited from Drawable, our bullseye automatically supports behaviors such as



15. PROCEDURAL RECURSION — BINARY SEARCH (SECTIONS 11.3, 11.4)

¢ Functional Recursion

e Recall, the factorial of a number: n!l=n-(n—-1)-(n—1)-(n —2)---3-2-1

e The number of ways that n items can be ordered (permutations) is n!

e Note, n! =n-(n—1)!. This calls for a recursion (although, a loop could also be easily used).

def factorial(n):

return 1
else:
return n - factorial(n—1)

|
|
| ifn<=1:
|
|
|

e Each time a function is called, the system creates an activation record to track the state of
that particular invocation. In the context of recursion, each individual call to the function
executes the same body of code, yet with a separate activation record.

e Here is a figure to explain the recursion involved in factorial(4):

factorial(4)
w24 n=4 factorial(3) |
s ) ~.6 n=23 factorial (2) _
~ ~ . .“2\.‘ n=2 factorial(1)
~ R % - J n=1

FIGURE 11.12: The trace of a call to factorial(4).

¢ Binary Search

e We want to know whether a specific value occurs in a list.

e Python’s list class uses a sequential search. That is, the program starts scanning from
the beginning of the list until it either finds what it is looking for, or reaches the end of the
list and reports a failure.

e Assume that the list of values is sorted. For example, a lexicon is a list of strings. It is
preferable to maintain a sorted list.

e Algorithmic Design

e In binary search we go through a sorted list by aiming right at the middle. If our target
value is not right in the middle, then it is in one of the two sub-lists; one of the left and one
on the right. In other words, the search now proceeds to one of the half-lists and we repeat
with recursion.

e The advantage of the binary search in comparison to the sequential list is that the binary
search is much faster. Using binary search on a list of length n, we obtain a result within
log,(n) number of steps. Whereas, the sequential search can take-up to n steps.

97



e Here is an implementation.

.

gi
C== =R = PR I S P S N

10

e Here is

return False
else:

return True

else:

return search(lexicon[midindex+1 : ], target)

def search(lexicon, target):
Search for the target within lexicon.

if len(lexicon) == 0:
midindex = len(lexicon) // 2
if target == lexicon[midindex]:

elif target < lexicon[midindex]:
return search(lexicon[ : midIndex], target)

lexicon a list of words (presumed to be alphabetized)
target the desired word

# base case

# found it

# check left side

# check right side

FIGURE 11.13: A bad implementation of the binary search algorithm.

a diagram of an example: searc(/’B’,’E’,’G’,’[’,’N",’S’], 'F’) :

\\ search('B','E",'"G","I'",'N",'5"], 'F")
False o

|E)¢i00|'l=['B','E','G','I','N','S']

target= 'F'
midindex =3

search({'B',"E'",'G'], "F")

lexicon=['B',"'E','G"]
target= 'F'
midindex =1

search{['G'], 'F")

lexicon=['G"]

t t="F"'
n?iirglendex -0 search([], 'F")
False - .
lexicon =[]
target= 'F'

FIGURE 11.14: The trace of the call search(['B','E","G","I",'N",'S"], 'F ") forthe
inferior implementation of binary search from Figure 11.13.

98

e This is not an ideal implementation because the recursion relies on creating a new list which
is half the original list. Creating this slice takes time proportional to the length of the slice,
and thus ruining the benefits of the binary search algorithm.



99

e Here is a better implementation — note, we do not create new sublists.

1 | def search(lexicon, target, start=0, stop=None):

21 "™ Search for the target within lexicon[start:stop].

3

4 lexicon  alist of words (presumed to be alphabetized)

5 target the desired word

H start the smallest index at which to look (default 0)

7 stop the index before which to stop (default len(lexicon) )

g |

9 if stop is None:
10 stop = len(lexicon)

11 if start >= stop: # nothing left

12 return False

13 else:

14 midindex = (start + stop) // 2

15 if target == lexicon[midIndex]: # found it

16 return True

17 elif target < lexicon[midindex]: # check left side
18 return search(lexicon, target, start, midindex)

19 else: # check right side
20 return search(lexicon, target, midindex+1, stop)

FIGURE 11.15: Preferred implementation of the binary search algorithm.

e Passing a reference to the list is quite efficient, as it does not involve copying the object. We
use indices start and stop. Note, the idea is the same as in the previous case, but we save
time by simply not copying sublists. Here is a diagram for the same example, searc(lezicon,
'F’) where lexicon = ['B’,’E’,’G’,’I’,’N’,’S"]:

search(lexicon, 'F ')

>
False - .

lexicon
/target =\ search(lexicon, 'F ', 0, 3)
start =0 »
stop=6
midindex = 3
lexicon
/target ='F"' search(lexicon, 'F ', 2, 3)
start =0 »
stop=3
midindex = 1
_lexicon
/ tg?;??t:z : search(lexicon, 'F ', 2, 2)
stop = >
list midlndex = 2 »
['B'.'E"','"G',"I','N","S"] \ False -
" lexicon
target= 'F'
start =2
stop=2

FIGURE 11.16: The trace of the call, search(['B',"'E",'"G","I","N",'S "], "F ') forthe
improved implementation of binary search from Figure 11.15.



100

e Sometimes we are not looking for an exact match of our target in the given list. Sometimes

we want to just match the first letter (in case of word search) or first digit (in case of number

search):

e Here is an implementation of the prefizSearch:

SO 00~ Lo L R e

gl—l—l—ll—l—ll—l—l—ll—l—
L= - I - L A I

def prefixSearch(lexicon, target, start=0, stop=None):
""Search to see if target occurs as a prefix of a word in lexicon[start:stop].

lexicon  alist of words (presumed to be alphabetized)

target the desired word
start the smallest index at which to look (default 0)
stop the index before which to stop (default len{lexicon) )

if stop is None:
stop = len(lexicon)
if start >= stop:
return False
else:
midindex = (start + stop)//2
if lexicon[midindex].startswith(target): # found prefix
return True
elif target < lexicon[midindex]: # check left side
return prefixSearch(lexicon, target, start, midindex)
else: # check right side
return prefixSearch(lexicon, target, midindex+1, stop)

FIGURE 11.17: Using binary search to check whether a prefix occurs within a list of
words.



16. CONTAINER CLASSES (LIST VS. TUPLE; DICTIONARY, SET, FROZEN SET (SECTIONS 12.1,
12.2, 12.3)

e Python has several classes that provide support for managing a collection. Example, list,
tuple. We call any such object a container.

e By design, Python’s containers all support certain common syntaxes. Example, for element
in data, element in data, len(data).

e There are differences in the behaviors and efficiencies of operations in the various container
classes.

e We first look at examples. Try out the following:

listl = list () #Constructor

mathematics ’)
10)
[1)
(4,5,6))

listl .append

(
(
list1 .append (
list1 .append (

(

list1 .append
print (list1)

#List is ordered, mutable, and heterogeneous

list2 = [’'physics’, (2,3,5), [20,30], 256] #Literal form

#Tuples

/ / / /. /. / / / / / / /) /) /) /)

tuplel = tuple() #Constructor
tuplel .append( 'mathematics’) #Will give AttributeError
#Tuples are not mutable.
tuple2 = (’mathematics’, 24, [1,2], (3,4,5))
#Literal form

#Tuple 1s ordered and heterogeneous.

#Tuples are not mutable.
101



102

#Dictionary

info = dict () #Constructor
info [ 'Name’|] = ’'Jane’
info["Age’] = 11

info[ Grade’] =5

print (info)

fruits = {’sweet’: ’mango’, ’bitter ’:’lemon’}
#Literal form

#Unlike lists or tuples, the keys in a dictionary can
#be non—numeric.
#Dictionaries are mutable, associative , and heterogeneous.

#Dictionaries are not ordered.

#Set

s = set () #Constructor
s.add(32)

s.add(42)

s.add(3)

s.add(’abc’)

print (s)

t = {’a’, 23,45} #Literal
print (t)



103

#Set 1s unordered.
#Set 1s mutable, heterogeneous.

#Set 1s not associative.

#Frozen Set

f1 = frozenset () #Constructor. Cannot be mutated.

f2 = frozenset ([3,4, abc’])
#f2 created from a list

#The only way to create a frozenset is by wusing

#an iterable parameter (list, set, tuple, etc.).

#Frozenset is not mutable (analogue of a tuple).
#Frozenset is not ordered, not associative (analogue of a set).

#Frozenset 1s heterogeneous.

#Arrays are meant to be homogeneous
#We need to import the array module to be able to
#build an array.

import array

al = array.array(’'d’, [1,3.4, 5.5])
print (al)

Commonly used type codes:

Code Type Minimum size in bytes



104

b’ int 1
‘B’ int 1
u’ Unicode character 2
'h’ int 2
'H’ int 2
i int 2
T int 2
1 int 4
'L int 4
T float 4
d’ float 8
#Arrays are ordered and mutable.

Here are some aspects of any container:

order — The classes list, tuple, array are used to represent an ordered sequence of

elements. They use the concept of index for designing the location of an element within the
sequence.

mutability — The distinction between a list and a tupe is that the list is mutable whereas
the tuple is immutable. So we can insert, replace, or remove elements of a list, which we
cannot do with a tuple.

associativity — Python’s dict (dictionary) class is used to represent an association between
a key and its value.

heterogeneity — A collection is called heterogeneous if it can hold elements of different
types. If a collection can hold only one type of elements, then that collection is called
homogeneous. Most of Python’s containers support heterogeneity.

storage — Most of Python’s containers are referential, in that the value of the elements
are not stored internal to the container, but indirectly as references to other objects. This
is the reason that heterogeneity is supported. But the indirect nature of the storage can be
less efficient in terms of memory usage and access time. For high-performance applications,
Python supports an array class, which provides compact storage for a collection of data
drawn from a chosen primitive type.

Here is a summary:

list | tuple | dict | set | frozenset | array

ordered v v v
mutable v v v v
associative v
heterogeneous v v v v v
compact storage v

FIGURE 12.1: A summary of the varying aspects of Python's containers.



105

Two Familiar Containers: list and tuple

The classes list and tuple are used to manage an ordered sequence of elements. The position
of a particular element within that sequence is designated with an index.

We may view both the list and tuple as an association between indices and values. Note,
the indices must be consequent integers from 0 to one less than the length of the sequence.
Limitations to the Use of a list or tuple

Lack of permanency

The elements in a list are identified using indices. But if one element is removed, then
indices of all the elements which come after changed. For instance, in a list named employee,
say employee[15] retires, then the employees previously numbered 16, 17, 18, ...are now
numbered 15, 16, 17, .... In other words, This means, an index cannot serve as a meaningful
and permanent identifier for an element.

The problem of large integers

Suppose we want to identify employees by their social security numbers, or identify books
using their 13-digit ISBN numbers. Placing these elements in a long enough list to accommo-
date all the social security numbers or ISBN numbers is impractical, since we are interested
only in a small fraction of such a long list.

Non-numerc identification

There are elements which do not have numbering scheme. For example, movies do not have
ISBN or other numbering schemes. Or countries, their capital cities, or cities and their
populations. Instead of a list, it would be much better to use a dict class

Dictionaries

A dictionary is an associative container. It represents a mapping from objects known as
keys to associated objects known as values. Unlike lists or tuples, in the dictionaries keys
can be non-numeric.

The keys: A key serves as an identifier when accessing a particular value in the dictionary.
They keys within a dictionary are required to be unique. Thus, employers rely on social
security numbers of their employees, or books are numbered using their unique ISBNs. Note,
keys could themselves be tuples so as to make certain that they are unique. For instance,
the first name of students may not suffice to distinguish students. It is better to use the
tuple (firstname, lastname) as a key.

Keys must be drawn from an immutable class, such as int, str, or tuple. The elements of
a dictionary are not inherently ordered as with a list. If a key were allowed to change, the
original placement of the element may no longer match the expected placement based on
the updated key.

In other words, all keys within a given dictionary much be unique and immutable.
The values

There are no restrictions on the allowable values in a dictionary. They can be from any
class, and they are not required to be unique.

Python’s dict Class: Here is an example of building a dictionary

flowers = dict () #Standard constructor syntax. Or,
flowers = {} #Literal form



106

flowers|['red’] = ’'rose’
flowers [’ yellow '] = ’daffodil”’
flowers [’ white '] = ’lilly ’

e Here is another dictionary:

DnaToRna = {’A’:'U’, 'C’:'G’, 'G:’'C’, 'T':'A’}

e Supported behaviors
e Here are some selected supported behaviors. Build a dictionary of your choice either using
a constructor or in a literal approach, and implement every method in the list below.

Syntax Semantics

dlk] Returns the item associated with key k: results in KeyError if k not found.

dlk] = value | Associates the key k with the given value.

kind Returns True if dictionary contains the key k; False otherwise.
knotind Returns True if dictionary does not contain the key k: False otherwise.
len(d) Returns the number of (key,value) pairs in the dictionary.

d.clear( ) Removes all entries from the dictionary.

d.pop(k) Removes key k and its associated value from dictionary,

returning that value to the caller; raises a KeyError if not found.

d.popitem( ) | Removes and returns an arbitrary (key, value) pair as a tuple.

d.keys( ) Returns a list of all keys in the dictionary (in arbitrary order).

d.values( ) Returns a list of all associated values in the dictionary (in arbitrary order).
d.items( ) Returns a list of tuples representing the (key, value) pairs in the dictionary.
for kind: Iterates over all keys of the dictionary (in arbitrary order):

this shorthand is equivalent to for k in d.keys( ):.

FIGURE 12.2: Selected behaviors of Python's dict class, for a prototypical instance d.

Containers of Containers

One may have a list, tuple, dict contain any type of object. In particular, one may have

a list of lists, a tuple of dictionaries, a dictionary of lists etc.,.

Modeling Multidimensional Tables

Here is a Tic-tac-toe board written in the form of a list of lists:

game — [[ ’X77 7}(77 ’O?] , [70’ , 70’ , 7X7] , [7X’ , 707 , 7X7]]

Storing a two-dimensional data set in this way is called row-major order:
X[X]|O

0|0 |X
X101X




107

list
— ~
/ | \
list list list
/ \ / \ / \
’ N/ N/ \‘
/ \ 3\
¥ Y Y 1 Y 1

str str str str str str str str str
IXI IXI IOI IOI IOI IXI IXI IOI IXI

FIGURE 12.3: A diagram of the Tic-tac-toe representation as a list of rows, which them-
selves are lists of strings.

e Note, gamefi/[j] returns the entry on the i-th row and j-th column.

e We may also have built game in a column-major order, as a list of columns.

e Modeling Many-to-Many Relationships

e Recall that a dictionary is a many-to-onerelationship between keys and values.

e Distinct keys could very well map to a single value, but one key cannot be mapped to many
values.

e Suppose we build a dictionary with a many-to-many relationship. That is, one key gets
mapped to a tuple.

e For instance, suppose we build a dictionary flowers where we have flowers/red’] = (’rose’,
‘hibiscus’) and several such examples.

e Then rose’” in flowers returns False since 'red’ is not a key.

e Likewise rose” in flowers.values() is also False, since flowers.values() is a list of tuples.

e The command ’rose” in flowers/red’] returns True.

e Reverse Dictionary

e As we know, a dictionary is a many-to-one relationship. Therefore, a reverse dictionary
would be a one-to-many relationship. Here is a function to build a reverse-dictionary from
a dictionary. Understand and test it.

def buildReverse(dictionary):
7?7 Return a reverse dictionary based upon the original.”””
reverse = {}
for key,value in dictionary.items(): #map value back to key
if value in reverse:
reverse [ value |.append (key) #add to existing list
else:
reverse [value] = [key] #establish new list

return reverse

e 12.4: Sets
e A set is an unordered collection of unique elements.



108

Python has two new built-in classes: set and frozenset. They both model the concept of
a mathematical set, with one distinction: set is mutable while frozenset is immutable.
Note though, elements added to a set must be immutable.

Constructor: The syntax for constructing a set is: set(), which by default produces an
empty set.

There is no literal form for a set, but a set can be formed from a list, string, tuple, or
dictionary.

Example, set([1,2,3,4]), or set(’aeiou’), or set((1,2,3)).

Similarly, one may build a frozenset from a list by using the syntax, frozenset(list).

Sets and Frozensets support accessors listed here:

Syntax (with alternate) Semantics

len(s) Returns the cardinality of set s.

vins Returns True if set s contains the value v, False otherwise.

vnotins Returns True if set s does not contain the value v, False
otherwise.

forvins: Iterates over all values in set s (in arbitrary order).

s==1 Returns True if set s and set t have identical contents, False
otherwise (order is irrelevant).

s<t Returns True if set s is a proper subset of {, False otherwise.

s<=t Returns True if set s is a subset of t, False otherwise.

s.issubset(t)

s>1

Retums True if set s is a proper superset of i, False otherwise.

s>=1
s.issuperset(t)

Returns True if set s is a superset of t, False otherwise.

s|t Retumns a new set of all elements that are in either set s or set t
s.union(t) (or both).
s&t Returns a new set of all elements that are in both set s and set t.

s.intersection(t)

s=1
s.difference(t)

Returns a new set of all elements that are in set s but not in set t.

st
s.symmetric_difference(t)

Returns a new set of all elements that are in either set s or set t
but not both.

FIGURE 12.4: Accessor methods supported by the set and frozenset.



109

e Here are methods which mutate sets.

Syntax (with alternate) Semantics
s.add(v) Adds value v to the set s; has no effect if already present.
s.discard(v) Removes value v from the set s if present;

has no effect otherwise.

s.remove(v) Removes value v from the set s if present;
raises a KeyError otherwise.

s.pop( ) Removes and returns arbitrary value from set s.
s.clear( ) Removes all entries from the set s.

5=t Alters set s, adding all elements from set t;
s.update(t) thus set s becomes the union of the original two.
s&=1 Alters set s, removing elements that are not in set t;
s.intersection_update(t) set s becomes the intersection of the original two.
s§—=t Alters set s, removing elements that are found in set t;
s.difference_update(t) set s becomes the difference of the original two.
5=t Alters set s to include only elements originally in

s.symmetric_difference_update(t) | exactly one of the two sets, but not both.

FIGURE 12.5: Behaviors that mutate a set.

e Some of these mutators can be applied to frozen sets. The intersection (or union) of
frozensets results in a frozenset.

e Check out which of the mutators can be applied to frozensets. Use examples.

e What happens when we consider intersection of a set with a frozenset? Order matters.



17. EVENT-DRIVEN PROGRAMMING, GRAPHICS MODULE, EVENT HANDLING (SECTIONS 15.1,

15.2, 15.3, 15.4)

An event-driven programming is a paradigm where an executing program waits passively
for external events to occur and then responds appropriately to those events.

We focus primarily on graphical user interfaces (GUISs).

Basics of Event-Driven Programming

Here is a basic example of event-driven programming:

name = input(”What is your name? 7) #Wait for response from user
print (” Hello %s. Nice to meet you.” %name)

Here is another example:

paper = Canvas ()

cue = paper.wait () #Wait for response from user

ball = Circle (10, cue.getMouseLocation ())
ball.setFillColor ('red’)
paper.add(ball)

Both these examples are sequential. In most software, the user has more freedom to control
the actions of a program. At any point, a user has the option of selecting menu items,
entering keyboard input, using a scroll bar, selecting text, and much more.

Event handling is an approach by which the program is able to declare various events
that should be available to the user, and then provides explicit code that should be followed
to handle each individual type of event when triggered. This piece of code is known as an
event handler.

Event handlers

Often a separate event handler is declared for each kind of event that can be triggered by a
user interaction.

An event handler is typically implemented either as a stand-alone function or as an instance
of a specially defined class.

When programmed as a stand-alone function, event handlers are known as callback func-
tions.

The appropriate callback function is registered in advance as a handler for a particular kind
of event. This is sometimes described as registering to listen for an event, and thus handlers
are sometimes called listeners. Each time such an event subsequently occurs, this function
will be called.

With object-oriented programming, event handling is typically implemented through an
event-handling class. An instance of such a class supports one or more member functions
that will be called when an appropriate event occurs. The advantage of this technique over
use of pure callback function is that a handler can maintain state information to coordinate
the responses for a series of events. For instance, wait() is supported by cslgraphics module.

The event loop
110



111

e The design of event-driven software is quite different from our traditional flow-driven pro-
gramming, although there is still a concept of the main flow of control. When the software
first executes, initialization is performed in traditional fashion, perhaps to create and deco-
rate one or more windows and set up appropriate menus. It is during this initialization that
event handlers are declared and registered.

e We want our software to handle any number of predefined events triggered in arbitrary
order.This is accomplished by having the main flow of control enter what is known as an
event loop. This is essentially an infinite loop that does nothing.

e When an event occurs, the loop stops to look for an appropriately registered handler, and
if found that handler is called (otherwise the event is ignored).

e When a handler is called, the flow of control is temporarily ceded to the handler, which
responds appropriately. Once the handler completes its task, the default continuation is to
re-enter the event loop. If the appropriate consequence of a user action is to “quit’ the event
loop.

e For example, every time we use the cslgraphics package, an event loop runs concurrently
with the rest of our program. Every time we click on the canvas’ window or typed on the
keyboard the event loop was informed. One exception is when we click on the icon to close
the window; the event loop triggers a built-in handler that closes the window. When all
canvas windows are closed, the event loop terminates. This starting and stopping of the

event loop happens automatically.
Main Program

win = Canvas( )

win.addHandler(handler1)
win.addHandler(handler2)
win.addHandler(handler3) handler1

¥ g

Event Loop [-—™1 handler2

handler3

FIGURE 15.1: The flow of control in an event-driven program.

e Threading

e There are several forms of event-driven programming. The first question at hand is what
happens to the flow of control once an event loop begins. In one model, the primary program
cedes the flow of control to the event loop

e Another model uses what is known as multithreaded programming, allowing the main
program to continue executing even while the event loop is monitoring and responding to

events.



112

e The main routine and this event loop run simultaneously as separate threads of the pro-
gram. Threading can be supported by the programming language and the underlying oper-
ating system. In reality the threads are sharing the CPU each given small alternating time
slices in which to execute.

e What follows heavily depends on csigraphics.py. Alternatively, you may work
with codes written with TKinter available in the appendix.

e The EventHandler Class

e The cslgraphics module includes a generic EventHandler class that should be used as
a parent class when defining your own handlers. The two methods of this class are the

constructor itself and a handle mathod.

EventHandler

EventHandler() handle(event)

FIGURE 15.2: The EventHandler class.

e The handle method does not itself do anything. This method is overridden by a child class
to describe the proper action in case of an event. The parameter to the handle method
is an instance of an Event class, used to describe the particular event that occurred. For

example,

class BasicHandler (EventHandler):
def handle(self , event):

print ('Event Triggered )

e Registering a handler with a graphics object

e For an event handler to be active, it must be registered with one or more graphical objects.

e Both the Canvas and Drawable classes support two additional methods named addHandler
and removeHandler to register and unregister a handler. For instance,

simple = BasicHandler ()
paper=Canvas ()

paper.addHandler (simple)

e Using a similar technique we can register an event handler directly with a particular drawable
object:

sun = Circle (30, Point(50,50))
sun.setFillColor (’yellow ")
paper = Canvas ()

paper.add (sun)

simple = BasicHandler ()
sun.addHandler (simple)

e Now the handler can be trigged only when an event is received by the sun. Clicking on any
other part of the canvas will not suffice.



113

e Note, it is possible to register a single handler with multiple shapes or canvases, and to have
multiple handlers registered with the same shape or canvas. If there are multiple handlers
registered with an object and a relevant event is triggered then each of those handlers is
called in the order that they were registered.

e A Handler with State Information

e Here is an example of a handler that counts the number of times that it has been triggered.

# Program: CountingHandler. py

# Authors: Michael H. Goldwasser
# David Letscher

#

from cslgraphics import x

class CountingHandler (EventHandler) :
def __init__(self):
EventHandler. __init__(self) # call the parent constructor!

self. _count = 0

def handle(self , event):
self. _count 4= 1
print ( 'Event Triggered. Count:’, self._count)

e Here is another example that updates a graphical count in the form of a Text object.

# Program: TallyHandler. py
# Authors: Michael H. Goldwasser
# David Letscher

7
7

from cslgraphics import x

class TallyHandler (EventHandler):
def __init__(self, textObj):
EventHandler. __init__(self)
self. _count = 0
self. _text = textObj
self. _text.setMessage(str(self._count)) # reset to 0

def handle(self , event):
self. _count +=1
self. _text.setMessage(str(self. _count))

e The Event Class



114

e Sometimes, an event handler may need information about the triggering event, such as the
mouse location or the type of event that was received. So, we pass an additional parameter

def handle(self, event): #Here, event is an instance of an Event

class

e The Event class supports a method getTrigger() which returns a reference to the underlying
object upon which the event was originally triggered (a canvas or a drawable object). Using
this information, we can rewrite the class HandleOnce as follows:

class HandleOnce(EventHandler) :
def handle(self, event):
print (" That’s all folks!!!7)

event . getTrigger ().removeHandler (self)

paper = Canvas ()
oneTime = HandleOnce ()

paper.addHandler (oneTime)

e The Event class also supports a getDescription() accessor that returns a string indicating
the kind of event that occurred.

e Mouse Events

e Mouse events can be recognized by getDescription() method which returns a string, 'mouse
click’, or 'mouse release,” or 'mouse drag.” For instance, when the user clicks the mouse and
leaves the mouse, it results in two mouse events: 'mouse click’ and 'mouse release.’

e The precise position of the mouse is given by getMouseLocation(). This method of the Event
class returns a Point instance. Here is a program that uses these methods.

class CircleDrawHandler (EventHandler) :
def handle(self, event):
if event.getDescription() = ’'mouse click ’:
¢ = Circle (5, event.getMouseLocation())

event .getTrigger ().add(c)

paper = Canvas(100,100)
handler = CircleDrawHandler ()
paper.addHandler (handler)

e Notice that this handler ignores other kinds of events. Try changing the code so that it
draws the circle on a mouse release.

e The method getOldMouseLocation() indicates where the mouse was before a 'mouse drag’
event was implemented.

e Here is a program to understand 'mouse drag’ event.

# Program: ClickAndReleaseHandler. py
# Authors: Michael H. Goldwasser



115

# David Letscher

7
7

from cslgraphics import x

class ClickAndReleaseHandler (EventHandler) :
def __init__(self):
EventHandler. __init__(self)

self . _mouseDragged = False

def handle(self, event):

if event.getDescription() = ’'mouse click ’:
self . _mouseDragged = False

elif event.getDescription() = ’mouse drag’:
self. _mouseDragged = True

elif event.getDescription () = ’'mouse release ’:

if self._mouseDragged:
print ( '"Mouse was dragged’)
else:
print ( "Mouse was clicked without dragging’)

if _name__ = ’__main__":
paper = Canvas|()
dragDetector = ClickAndReleaseHandler ()
paper.addHandler (dragDetector)

e Keyboard Events

e When a keyboard is used, the getDescription() reports 'keyboard.” If needed, the getMouse-
Location() is supported for a keyboard event.

e Keyboard events also support a behavior getKey() that returns the single character that
was typed on the keyboard to trigger the event.

e Note that if the user types a series of characters, each one of those triggers a separate event.



116

e Here is a program showing how to display characters graphically as they are typed within a

canvas.

# Program: KeyHandler. py

# Authors: Michael H. Goldwasser
# David Letscher

#

from cslgraphics import x

class KeyHandler (EventHandler):

def __init__(self, textObj):

EventHandler. __init__(self)
self . _textObj = textODbj

def handle(self , event):

if event.getDescription() = ’'keyboard’:
self. textObj.setMessage(self. textObj.getMessage() + event.
getKey ())
elif event.getDescription() = ’'mouse click ’:

self. _textObj.setMessage (') # clear the text

if __name__ = ’__main__":
paper = Canvas ()
textDisplay = Text(’’, 12, Point(100,100)) # empty string
paper.add(textDisplay)
echo = KeyHandler (textDisplay)
paper.addHandler (echo)

e Timers

e Other than user triggered activities involving mouse and keyboard, there are other events
generated internally.

e The cslgraphics module includes the Timer class. A timer instance is a self-standing object
that is used to generate new events. The syntax Timer() creates a timer that generates an
event after ten seconds has elapsed. The start() method must be called to begin the timer’s
clock.

e For a timer to be useful, there must be a corresponding handler that is registered to listen
for those events.

e Here is an example of animating a rotating shape:



class RotationHandler(EventHandler):
def __init__ (self, shape):
self._shape = shape

def handle(self, event):
self._shape.rotate(1)

paper = Canvas(100,100)
sampleCircle = Circle(20, Point(50,20))
sampleCircle.adjustReference(0,30)
paper.add(sampleCircle)

alarm = Timer(0.1, True)

rotator = RotationHandler(sampleCircle)
alarm.addHandler(rotator)

alarm.start( )

117

e This program rotates the circle around its center every tenth of a second. This will continue

until the canvas is closed.
e Monitors

e The Monitor class supports two methods, wait() and release(). When wait() is called,

control of that flow will not be returned until the monitor is somehow released. Here is an

example where Monitor is used.

class ShapeHandler(EventHandler):
det __init__ (self, monitor):
EventHandler. __init__ (self)
self._monitor = monitor

def handle(self, event):
self._monitor.release( )
paper = Canvas( )

checkpoint = Monitor( )
2 | handler = ShapeHandler(checkpoint)

:EGOQ*JGNL!IJ&-L‘JI\J-—-

d

14 | cir = Circle(10, Point(50,50))

15 |cir.setFillColor("blue")

16 |cir.addHandler(handler)

17 | paper.add(cir)

18 |square = Square(20, Point(25,75))
19 |square.setFillColor(" red")

20 | square.addHandler(handler)

21 | paper.add(square)

23 | checkpoint.wait( )
24 | paper.setBackgroundColor( ' green)

FIGURE 15.9: The use of a monitor.

if event.getDescription( ) == 'mouse drag':



118

e Programming Using Events
e Adding and Moving Shapes on a Canvas: Here is a program. Explain what happens.

# Program: NewShapeHandler. py
# Authors: Michael H. Goldwasser
# David Letscher

7
7

from cslgraphics import x

class ShapeHandler (EventHandler):
def __init__(self):
EventHandler. __init__(self)

self . _mouseDragged = False

def handle(self, event):
shape = event.getTrigger ()

if event.getDescription() = ’mouse drag’:
old = event.getOldMouseLocation ()
new = event.getMouseLocation ()
shape . move (new. getX ()—old.getX (), new.getY ()—old.getY ())
self. _mouseDragged = True
elif event.getDescription() = ’mouse click :
self . _mouseDragged = False
elif event.getDescription() = ’'mouse release’

if not self. _mouseDragged:
shape.scale(1.5)
elif event.getDescription() = ’'keyboard’:
shape.setFillColor (Color.randomColor () )

class NewShapeHandler (EventHandler) :
def __init__(self):
EventHandler. __init__(self)
self . _shapeCode = 0
self. _handler = ShapeHandler ()

# single instance handles all shapes

def handle(self, event):
if event.getDescription() = ’'mouse click ’:
if self._shapeCode = 0:
s = Circle(10)



119

elif self. _shapeCode = 1:
s = Square(10)
elif self. _shapeCode = 2:
s = Rectangle (15,5)
elif self._shapeCode = 3:
s = Polygon(Point (5,5), Point(0,—5), Point(—5,5))
self. _shapeCode = (self. _shapeCode + 1) % 4

# advance cyclically

s.move(event.getMouseLocation () .getX (), event.
getMouseLocation () .getY ())
s.setFillColor (’white ")
event .getTrigger () .add(s)
# add shape to the underlying canvas
s.addHandler (self. _handler)
# register the ShapeHandler with the new shape

if __name__ = ’__main__":
paper = Canvas (400, 300, ’'white’, ’Click me! ")
paper.addHandler (NewShapeHandler () )

# instantiate handler and register all at once

e A Dialog Box Class
e Here is another program; explain what it does.

# Program: Dialog. py
# Authors: Michael H. Goldwasser
# David Letscher

7
7

from cslgraphics import x

class Dialog(EventHandler): # Note: handles itself!

"77Provides a pop—up dialog boxr offering a set of choices.

P

def __init__(self, prompt='Continue?’, options=('Yes’, 'No’),
title = "User response needed’, width=300, height
=100):

»77 Create a new Dialog instance but does not yet display it.

prompt the displayed string (default *Continue?’)



120

options a sequence of strings, offered as options (default
(’Yes’, ’'No’) )

title string used for window title bar (default ’User
response needed’)

width width of the pop—up window (default 300)

height height of the pop—up window (default 100)

»n»

EventHandler. __init__(self)

self . _popup = Canvas(width, height, ’lightgray’, title)
self . _popup.close () # hide, for mnow

self . _popup.add(Text(prompt, 14, Point(width/2,20)))

xCoord = (width — 70%(len(options)—1))/2
# Center buttons
for opt in options:
b = Button(opt, Point(xCoord, height —30))
b.addHandler (self) # we will handle this button ourselves
self. _popup.add(b)
xCoord += 70

self. _monitor = Monitor ()

self. _response = None

def display (self):

"77 Display the dialog, wait for a response and return the

200

answer.
self. _response = None # clear old responses
self . _popup.open () # make dialog wvisible

self. _monitor.wait () # wait until some button is pressed
self . _popup.close () # then close the popup window

return self. _response # and return the wuser’s response

def handle(self, event):
"77Check if the event was a mouse click and have the dialog
return.”””
if event.getDescription() = ’'mouse click ’:
self. _response = event.getTrigger ().getMessage ()
# label of chosen option
self. _monitor.release ()

# ready to end dialog



121

if __name__ = ’__main__":
survey = Dialog( ’How would you rate this interface?’,
(’good’, ’so—so’, ’poor’), ’'User Survey'’)
answer = survey .display () # waits for user response
if answer != ’good’:

print ”"Let’s see you do better (see exercises)”

e A Stopwatch Widget
e Explain what the following program does.

# Program: Stopwatch. py
# Authors: Michael H. Goldwasser
# David Letscher

7
7

from cslgraphics import x

class Stopwatch(Layer, EventHandler):

777 Display a stopwatch with start, stop, and reset buttons.”””

def __init__(self):
»77 Create a new Stopwatch instance.”””

Layer. __init__(self)
EventHandler. __init__(self)

border = Rectangle (200,100)
border.setFillColor (’white ")
border.setDepth (52)

self. _display = Text(’0:00’, 36, Point(0,—20))

self. _start = Square(40, Point(—60,25))
self. _stop = Square(40, Point(0,25))
self. _reset = Square(40, Point(60,25))
buttons = [self. _start, self._stop, self. _reset|
for b in buttons:
b.setFillColor (’lightgray ’)
b.setDepth (51) # in front of border, but behind icons



122

self. _startIcon = Polygon( Point(—70,15), Point(—70,35), Point
(—=50,25) )

self. _startlIcon.setFillColor(’'black’)

self. _stoplcon = Square(20, Point (0,25))

self. _stoplcon.setFillColor (' black’)

self. _resetlcon = Text(’00", 24, Point(60,25))

buttons.extend ([ self. _startlcon, self._stoplcon, self.
_resetlcon])

for obj in buttons + [self._display, border]:
self .add(obj) # add to the layer

self. _clock =0 # measured in seconds

self. _timer = Timer (1, True)

for active in [self. _timer| + buttons:
active.addHandler (self) # we will handle all such events

def getTime(self):
"77 Convert the clock’s time to a string with minutes and
seconds.”””
min = str(self. _clock // 60)
sec = str(self. _clock % 60)
if len(sec) = 1:
sec = '0’+sec # pad with leading zero

[

return min + + sec

def handle(self , event):

"77Deal with each of the possible events.

The possibilities are timer events for advancing the clock,
and mouse clicks on one of the buttons.
if event.getDescription() == ’'timer  :
self. _clock +=1
self . _display .setMessage (self.getTime())
elif event.getDescription() = ’mouse click :
if event.getTrigger () in (self._start, self._startlcon):
self. _timer.start ()
elif event.getTrigger() in (self._stop, self._stoplcon):
self. _timer.stop ()

else: # must have been self._reset or self._resetlcon



123

self. _clock =0
self . _display.setMessage(self.getTime())

if __name_._. = ’__main__":
paper = Canvas(400,400)
clock = Stopwatch ()
paper.add(clock)
clock .move(200,200)



18. NETWORK PROGRAMMING

A Network Primer
Every computer has an IP (Internet Protocol) address. It is a numerical label assigned to
each device connected to a computer network that uses the Internet Protocol for communi-
cation.
In IPv4 (Internet Protocol version 4), an IP address consists of 4 numbers separated by
dots. Each of these 4 numbers is a number from 0 to 255. In other words, in IPv4, an IP
address takes up 4 bytes (= 32 bits).
[Pv6 is under deployment now, and it uses128 bits.
To find your computer’s Public IP address, simple google search.
To find your computer’s Private IP address, open your command prompt (windows) or
terminal (mac) and type ipconfig (windows) or ifconfig (mac). Hidden among all those lines
is the Private IP address for your computer.
For a mac, there is another way of finding your computer’s private IP address. Another way
is to go to System Preferences —> Network —> Wi-Fi (or TCP/IP) to find IP number.
The string of characters we type to go to a website is known as URL (uniform resource
locator). For example, http://www.prenhall.com/goldwasser
The substring www.prenhall.com is termed a host name and symbolizes a machine some-
where on the network.
Behind the scene, network connections are established using a number known as an IP
address, example, 168.146.73.101. To translate a host name to its underlying IP address,
your computer will send a query to a special computer on the internet known as a domain
name server (DNS).
To find the IP address of prenhall.com, go to your command prompt or terminal and type
ping prenhall.com. You will find the static IP address of the host name. You will need to
stop the repeated pings by CTRL-C.
When you ping prenhall.com you will see the IP address 168.146.73.101. When you ping
google.com you will see the IP address 172.217.12.174.
Open a browser and type in these IP addresses to open the respective addresses.
Consider the web-address

http://www.bce.cuny.edu/academics/academic-programs/

The /academics/academic-programs/ portion is a path to a particular information on
bce.cuny.edu server.
The http portion of the URL denotes a particular network protocol that will be used for
the transmission of information. In this case, the HyperText Transfer Protocol.
Since networks are used to transmit information, the sender and receiver must have an
agreement as to the particular format that will be used.
Because so many different protocols exist, a machine will often execute different software
depending upon the data format being used.

124



125

e To help quickly segment incoming network traffic according to the protocol, each network
connection to a remote machine must be designated at a specific port. To find port num-
bers, go to command-prompt or terminal and type netstat -a -b -n. As long as you have
administrative authority, you will see various ports on your computer.

e A computer port is a type of electronic, software- or programming-related docking point
through which information flows from a program on your computer or to your computer
from the Internet or another computer in a network. A network is a series of computers
that are physically or electronically linked.

e In computer terms, a computer or a program connects to somewhere or something else on
the Internet via a port. Port numbers and the user’s IP address combine into the "who does
what” information kept by every Internet Service Provider.

e A port is a number ranging from 0 to 65535 (16 bits). There are established conventions for
using certain port numbers for certain types of activity.

e For example, queries to a web server are typically sent through port 80, and so a machine
might automatically handle network traffic from that port with software designated for http
activity. For https, the port number is 443.

e For instance, go to your web-browser and type in google.com:80 or google.com:443. Also try
google.com:20

e To find some of the common port numbers, visit

https://www.webopedia.com/quick_ref/portnumbers.asp

e A network socket

e To manage the use of a specific network connection, programmers rely upon an abstraction
known as a socket. A socket is one endpoint of a two-way communication link between two
programs running on the network.

e A socket is the combination of an IP address plus port. For example, if you are looking
at the Google website, then there is a connection between your computer and the Google
server. Your computer’s I[P number+port is the socket at your end. Google’s IP number
and port is the socket at the other end.

e For a connection between two machines, a separate socket is maintained at each end, used
to track the incoming and outgoing data for that machine.

e As a programmer, the socket serves as the interface for sending or receiving data from the
opposite machine. In Python, this is modeled using a socket class which is imported from
the socket module.

from socket import socket

s = socket () #This command creates a socket.

e To open a network connection to a remote host, we must specify both the host address and
the network port number:

s.connect( ('www.prenhall.com’, 80))

e This class supports a variety of behaviors. Some are summarized here:



126

Syntax Semantics

s.connect( (host,port) ) | Connects socket s to the remote host at the specified port, raising an
error if the connection fails.

s.send(data) Sends the given string to the remote host.

s.recvimaxNumChars) | Returns a string of character that have been received from the remote
host, up to the specified maximum number. If fewer characters are
returned, this means that no further characters are currently
available. If an empty string is returned, this signifies that the
connection is no longer open. If the connection is open yet no new
data has been received, this call waits indefinitely before returning.

s.close( ) Disconnects socket s from the remote host (this instance cannot be
reconnected).

FIGURE 16.1: Selected behaviors of Python's socket class, on prototypical instance s.

e Here are some more socket commands:

e socket.bind(host, port) This binds the socket with the host (IP address) and the port. Note,
bind() is different from connect().

e bind() is called assigning a name to a socket. It associates the socket with its local address.
In other words, the server side binds, so that clients can use this address to connect to server.

e connect() is used to connect to a remote (server) address. In other words, connect() is on
the client side.

e socket.listen() The server is listening whether any data has been received.

e The send() method is used to transmit data to the remote host. The parameter is a string
to be transmitted.

e The recv() method is used receive data from the remote host and returns a string of char-
acters. Unlike reading from a file, the recv() method requires a parameter to designate the
maximum number of characters that we are willing to accept at the moment. It is not
possible to accept an unbounded amount of data at one time.

e The client connects to the server to make a request for information. An analogy is, an
applicant calls an employer for a job. Note, the employer does not even need to know the
existence of an applicant. Likewise, the server does not need to know even the existence of
a client. But the client needs to know the existence, and the address of the server.

e The client and the server have their own steps in establishing their own sockets.

e On the client side, the following steps are needed:

1. Create a socket with the socket() method,;
2. Connect the socket to the address of the server using the connect() method;
3. Send and receive data typically using write() and read() methods.
e On the server side, the following steps are needed:
1. Create a socket with the socket() method;
2. Bind the socket to an address using the bind() method.

3. Listen for connections with the listen() method;



127

4. Accept a connection with the accept() method. Note, this call typically blocks until a
client connects with the server.

5. Send and receive data. The accept() method extracts the first connection request on
the queue of pending connections for the listening socket, creates a new connected socket,
and returns a new file descriptor referring to that socket. Once you have that new file

descriptor, you can use recv() to receive data from the client on it.

Server

| socket () |
| bind() |

Client

listen() | | socket () |

|accept(]|

block Connection
until establishment

there are o ]I connect ()

connection
from
client

Daca (request)
read() 1 write()

Process
request

Data (reply)
| write() E 4 read()

|close(1 | | close()

When a call to recv() is made, there are four possible responses.

B

First response: The call returns a string of the indicated length. There may exist additional
data sent through the network, yet not returned by this call due to the specified limit. Such
further data is buffered by the socket instance and returned by a subsequent call to recv().
Second response: The call returns less data than the specified maximum, presumably because
no further data has been sent by the remote host.

Third response: No additional data is available. Rather than return empty handed, this
call waits indefinitely for more data to be received through the network. This may be
problematic if the remote host has no intention of sending data.

Fourth response: The call returns an empty string. This indicates that the connection has
been closed either by the remote host or a network disruption, so there is no reason to
continue waiting.

We can terminate a network connection from our end by invoking the close() method upon
the socket. Once we have closed a connection, any subsequent call to send() or recv() will

result in an error.



128

e Writing a Basic Client

e The two most common models for network communication are: client-server model and
peer-to-peer (P2P) model.

e In a client-server model the machine acting as a server waits for a client to initiate contact.
For example, a web server waits for someone to make an explicit request to receive content
from that website.

e The protocols used for the client-server module involves the client sending a request and the
server sending a response to that request. The software for controlling a client is usually
different from the software for controlling a server.

e In a peer-to-peer network, two connected machines have more symmetric capabilities and
thus each run the same software.

e Peer-to-peer software is often implemented by combining the separate capabilities seen in
client software and server software.

e Fetching the Time and Date

e The National Institute of Science and Technology (NIST) runs servers that, when queried,
report the current time.

e These servers are connected to atomic clocks so their time is precise (although the time
when it is received may not be precise due to network delay).

e Time servers support a simple protocol on port 13 known as daytime.

e Whenever a client opens a connection to a time server, the server immediately returns a
string that contains the time and date information. The client need not even send an
explicit request; the mere act of opening a connection implies the client’s desire to know the
time.

e Try the following:

from socket import socket #importing a the socket class
connection = socket () #instantiate an instance of the socket class
connection.connect ((’time.nist.gov’, 13))

#establish a connection to one of NIST’s servers
print (connection.recv (1024))

#the server sends a formatted string which

#we retrieve and print;

#the value 1024 is the maximum number of bytes

#of data we are willing to receive

e You should obtain a string which resembles ‘\n58500 19-01-17 11:35:00 00 0 0 710.3 UTC(NIST)
Xx \H’

e Here, UTC stands for Universal Time Coordinated (formerly known GMT — Greenwich
Mean Time).

e Here is another way of printing:

from socket import socket
connection = socket ()

connection.connect ((’'time.nist.gov’, 13))



129

fields = connection.recv (1024).split ()

date = fields [1].decode()

time = fields [2].decode ()

print ('Date (YY — MM — DD) is %s, and time is %s (UTC)’ %(date, time))

Downloading a Web Page

We now develop a client that downloads and saves a web page. After the connection is
made, the client must explicitly send a request to the server for the desired web page.
Note that data received (or sent) is in 'UTF-8" code. For efficient storage of strings, the
sequence of unicode points are stored into set of bytes. This is encoding. For example, try

the following on your shell:

)

= ’This is a string. We want to encode it.
.enclode ("utf —8’) #see the output.

.encode ("utf —16") #now see the output.
.encode ("utf —32") #what does this look like?

S Y

By default, the encode() method returns "utf-8" encoded version of the string.

For more on encoding visit
https://docs.python.org/3/library/codecs.html#standard-encodings

Likewise, when we receive data, it is encoded. Therefore, we must decode that data.

Here is a complete program to download a single web page and save the contents (but not

the header) to a file. Try the program with the website
"http://fsw01.bee.cuny.edu/mathdepartment /Courses/Math/MTH23 /math23.htm’

# Program: webclient. py

# Authors: Michael H. Goldwasser

# David Letscher

#

# This example is discussed in Chapter 16 of the book
# Object—0Oriented Programming in Python

#

from socket import socket
#Try: http://www. bece. cuny . edu/academics/academic—programs/
print ( 'Enter the web page you want to download.’)

print ( 'Use the format http://domain.name/page/to/download’)

url = input()

server = url.split (/) [2] # e.g., domain.name
page = '/’ + 7/ . join(url.split(’/")[3:]) # e.qg., /page/to/
download

connection = socket ()



130

connection.connect( (server, 80) )
connection.send (str.encode('GET %s HITTP/1.0\r\n\r\n’ %page))
#A\r stands for CR (Carriage Return)
An stands for LF (Line Feed)
#The request 'GET /index.html HITP/1.0° asks the
#server to send the index.html page using version 1.0 of HTTP
#protocol.
raw = connection.recv(1024).decode( utf—8")
# read first block (header + some content)

sep = raw.index (’\r\n\r\n’)
header = raw| :sep]
content = raw|[sep+4: |
#Fach line of th header is terminated with '\r\n’ and
#the entire header will not have any blank lines. But the
header

#ends with a blank line. So, \r\n\r\n captures this end of the

header.

outputFile = open(’download.html’, ’'w’)
outputFile. write (content)

# write out content we have seen thus far

while len(content) > O0: # still more possible content...
content = connection.recv(1024).decode( utf—8")

outputFile.write(content) #keep writing to the outputFile

#Looks like no content is left (that is, len(content) = 0)
outputFile. close ()

connection . close ()

Our program for downloading a webpage shows how low-level steps are executed when
retrieving a webpage from a server using the HT'TP protocol.

Note, this task is high level, and fairly common in practice. So, Python has a library (urllib)
which contains several tools for web processing.

In particular, there is a function urlopen which takes a string parameter specifying a URL
and returns a file-like object from which we can read the downloaded contents. Moreover,
this function uses a more modern version of HT'TP than 1.0 (presently on HTTP 3.0).



131
e Here is a high-level way of downloading a webpage:

from wurllib import request

print ("Enter the webpage you want to download’)

print ('Use the format http://domain.name/page/”)

print ('For example, http://www.bcc.cuny.edu/academics/academic—
programs /")

url = input ()

content = request.urlopen(url)

contentString = content.read ()

outputFie = open(’download.html’ 6 ’'w’)
print (contentString , file = outputFile)
outputFile.close ()



19. BAsic NETWORK SERVERS

e Writing a server is quite different from writing a client.

e A client typically establishes a connection, makes a request, and processes the response.

e Implementing a server at a low level consists of listening on a particular port for incoming
connections, creating a socket to manage each such connection, and then following the chosen
network protocol for communication with the client.

e Python provides a socketserver module with some convenient tools to help write a server.

e TCP stands for Transmission Control Protocol used for establishing connections on
the internet.

e The TCPServer class handles all the details of listening on a specified port for incoming
connections and creating a dedicated socket for each such connection.

e The precise interactions that should take place once a client has connected to the server
needs to be customized.

e For this, we provide a second class that will be used to handle each connection (event-driven
programming).

e We define a special-purpose class that inherits from the BaseRequestHandler class (also
imported from socketserver module).

e Every time a new connection is established by a client, a handle method is called.

e By the time the body of the handle method is executed, the TCPServer will have already
initialized a socket, identified as self.request, that can be used for communicating with the
client.

e Note that in this case, the the server’s socket uses the send method to send data from the
server to the client. Likewise, the recv method is used to retrieve data from the client to
the server.

e The port can be whatever number we choose (other than those reserved for special protocols).
But the client needs to reach out to the same port.

e The HandlerClass is the name of the customized handler class, as opposed to an instance
of that class.

e The method serve_forever() tells the server to continue running so long as the Python
program is executing. We can terminate the server by interrupting the Python interpreter.

e Here is the echo server:

# Program: echoserver.py
# Authors: Michael H. Goldwasser
# David Letscher

7

from socketserver import TCPServer, BaseRequestHandler

class EchoHandler (BaseRequestHandler) :
def handle(self):

"7’ This overrides the handle method of the parent class.
132

20



133

message = self.request.recv(1024)
#self.request references the controlling socket.

self .request.send (message) #This is the echo

# may need to customize localhost and port for your machine

echoServer = TCPServer( (’localhost’, 9000), EchoHandler)
#Ther Server instance.

echoServer.serve_forever ()

#This activates the server

e Once the server is up and running, test it. Start a second Python interpreter session on the

same machine (or even some other machine) and try the following:

from socket import socket

echo = socket ()

echo.connect( (’localhost’ |, 9000)) #if you are on the same
machine. Else, find the IP of the machine with the server.

echo.send (” This is a test '.encode())

print (echo.recv(1024).decode())

e The return value is the number of characters that were successfully sent. This is provided
by the socket (not the echo server).

e If we try to echo a second message on this existing socket, we will find that the connection
has been closed.

e But as long as the echo server is executing, we could create a new socket and echo.

e Basic Web Server

e A web server is used to allow others access to content stored on the server’s machine.

e A web server is a computer system that processes requests via HTTP, the basic network
protocol used to distribute information on the World Wide Web.

e We present a code for a web server below.Note, our intent is to only give access to files or
directories located in the same place that we run our script. If we are unable to open the
file, we report this error using a standard HT'TP protocol.

e Note, instead of the standard port number 80, we use the port number 8080.

e Word of Warning:

e Running our web server implementation on your computer for any extended length of time

is a security risk. Do not leave it running after trying it out.

# Program: webserver. py
# Authors: Michael H. Goldwasser
# David Letscher

7

from socketserver import TCPServer, BaseRequestHandler

class WebHandler (BaseRequestHandler) :



134

def handle(self):
"7 Querriding the handle method of the base class. '’

command = self.request.recv(1024).decode( utf—8")

if command[:3] = ’'GET’:
pagename = command. split () [1][1:]
#ldentify the mame of the file , and

# remove leading '/’ for filename

try:
requestedFile = open(pagename, 'r’)
content = requestedFile.read ()

requestedFile. close ()
header = "HTTP/1.0 200 OK\r\n’
#standard header
self .request.send (header.encode( utf—8"))

self .request.send(content.encode( utf—8"))

except [OError: # could not open the file
self .request.send ('HTTP/1.0 404 Not Found\r\n\r\n’.encode

)

webServer = TCPServer( (’localhost’, 8080), WebHandler)

webServer.serve_forever ()
On a separate interpreter, type the following:

from socket import socket

s = socket ()

s.connect ((’localhost *, 8080))
fileName = ’trial.ext’

message = 'GET /'+fileName

s.send (message.encode () )

print (s.recv(1024).decode(’utf—8"))

Note, if the file you asked for is larger than the limit of 1024 bytes, then you would have to
print the next chunks again and again.



135

e Network Chat Room

e We want to build a client-server model for a network chat room.

e Unlike the previous case, we need to specify our protocols. For instance, unlike the echo
server, here when a client connects to the server, they may stay connected for quite a while.
This is called a persistent connection.

e In a persistent connection, the server cannot be solely devoted to handling that connection
until it is closed, or else it will not be able to respond to other clients trying to connect.

e Here is a persistent echo server:

# Program: persistentEchoServer.py
#

from socketserver import TCPServer, BaseRequestHandler

class EchoHandler (BaseRequestHandler) :
def handle(self):
"7 This overrides the handle method of the parent class. '’

active = True

while active:

message = self.request.recv(1024).decode ()
#self.request references the controlling socket.

if message.lower() = ’quit :

self . request.send (("ECHO: Goodbye. ”).encode())

active = False #Breaks the while loop
else:

self .request.send (("ECHO: ” + message).encode()) #This 1is

the echo

self .request.close () #closes our socket at the end of the

while loop

# may need to customize localhost and port for your machine

echoServer = TCPServer( (’localhost’, 9000), EchoHandler)
#Ther Server instance.

echoServer.serve_forever ()

#This activates the server



136

On the client side, try the following on an interpreter:

from socket tmport socket

echo = socket ()

echo.connect ((’localhost 7,9000))
echo.send( this is a test.’.encode())
print (echo.recv(1024).decode())
echo.send( hello. . encode())
print (echo.recv(1024).decode())
echo.send(’ quit ’.encode())

print (echo.recv(1024).decode())
echo.send( hello. . encode())
print (echo.recv(1024).decode())

)0

Likewise, the client also needs to do two things: one, monitoring the keyboard in case the
user enters any commands, and two, monitoring the socket to listen for transmissions from
the server.

So we will use multithreading. This allows several different pieces of software to execute
at the same time.

Try the following:

from threading import Thread

from time import sleep

class MyThread (Thread ) :
def run(self): #overrides the run() method of Thread class.

print ( 'Second thread begins. )
sleep (5)
print ( ’Second thread is done.’)

secondThread = MyThread ()

secondThread . start () #indirectly calls the run() method.

print ( 'The program is done.’)



137

e Here is a flow of our multithreaded programme.

FIGURE 16.12: The flow of a multithreaded program.

e On some systems, the first two of the output statements may be reversed as the two threads
compete with each other for time on the processor.

e Communication Protocol:

e We want to differentiate between messages that users send to each other and messages that
the client and server software send to each other.

e Users should be allowed to come and go or remain.

e Some messages are meant for everyone in the room, and some are private.

e The user interacts with the client software.

e There are four events for a particular user at the client side: the user may join the room,
the user may quit the room, the user may send a message to the entire room, or the user
may send a message to a specified individual.

Join the room using given identity 'ADD %s\n" % screenName

Broadcast the message to everyone | 'MESSAGE %s\n' % content

Send a private message '"PRIVATE %s\n%s\n' % (recipient,content)

Quit the chat room "QUITAN'

FIGURE 16.8: The protocol for messages from the client to the server.

e The server will inform a client whenever another individual joins or leaves the room, and
whenever messages have been entered that are supposed to be seen by this client’s particular
user.

e We differentiate between messages that are viewable because they were broadcast to the
whole room and messages that are viewable because they were privately sent to this user.

e Finally, the server will explicitly acknowledge when it receives word that a particular user
is quitting the chat room.



138

Message Type Format
New user has joined "NEW %s\n' % screenName
Message was broadcast to everyone | 'MESSAGE %s\n%s\n' % (sender, content)
Private message was sent to user 'PRIVATE %s‘n%s\n' % (sender, content)
Someone has left the room 'LEFT %s\n"' % screenName

| Acknowledges request to quit |+ Go )DBYEAN'

FIGURE 16.9: The protocol for messages from the server to the client.

The Server

Most of the work involves the definition of a ChatHandler class that specializes
BaseRequestHandler (similar to what we did for our echo server and our web server).

The primary difference is as follows: For the echo server and the web server, each connection

represented a single query, which is processed and dismissed. In the chat server, the handle

method is called whenever someone connects to the server and the routine continues for the

full duration of that user’s participation.

That is, the handle routine consists of one big while loop that begins as soon as a client

connects. It remains active until finally receiving the QUIT command from the client or

until the connection fails (when recv returns an empty transmission).

The _socketLookup dictionary is maintained to map a screen name to the actual socket that

is being used to manage the connection to that user’s client.

A new entry is added to the dictionary when a user initially joins the room, and the user’s

socket removed after the connection is closed — the socket self.request is closed and the

username key-value pair is popped from the dictionary.

The _broadcast function is a utility for transmitting network activity to each current client.

There is a separate ChatHandler instance to manage each user’s connection to our server.

The handle method will be running for a long time as one particular user remains in the

chat room.

An important distinction between this implementation and our earlier servers is that we use

the ThreadingTCPServer class, not the TCPServer class. The threaded version of the

TCP server uses multithreading.

Here is the ChatHandler:

from socketserver import ThreadingTCPServer, BaseRequestHandler

# A global dictionary.
# This associates usernames to sockets.
_socketLookup = dict ()

# Send the announcement to all wusers.
def _broadcast (announcement):
for connection in _socketLookup.values():

connection . send (announcement . encode ())



139

class ChatHandler (BaseRequestHandler) :

def handle(self): #Owverriding the handle method of the base
class

# We will change this as needed.

username

"Unknown’
active = True

while active:

# Wait for something to happen.
transmission

self . request.recv(1024).decode()
if transmission:

# The transmission should have the form *[COMMAND]
[DATA]’

command = transmission.split () [0]

data = transmission[l+len (command) : |

if command == ’ADD’:

username = data.strip () #removes leading and
trailing whitespace

_socketLookup [username |

building the dictionary
_broadcast ( 'NEW %s\n '%username )
elif command = "MESSAGE’:

_broadcast ( 'MESSAGE %s \n%s\n ’'%(username , data)

)

elif command = ’PRIVATE’:

self . request #

recipient = data.split(’\n’)[0]

if recipient in _socketLookup:

content = data.split(’\n’)[1]

_socketLookup [recipient |.send (( 'PRIVATE %s
\n%s\n %(username , content)).encode())

elif command — 'QUIT :
active False
# Tell the user we saw the ‘QUIT .
self . request.send ( 'GOODBYE\n’.encode ()) #

acknowledge
else:

# If the transmission wvariable

1s not set, then
the socket failed.



140

active = False #socket has failed

# The ChatHandler is mno longer active.
# Fither the user QUIT or the socket failed.

self.request.close ()
_socketLookup .pop(username)
_broadcast ( 'LEFT %s\n’ % username)

# Create a Threading TCP Server.
# It should listen on this machine (localhost) at port 9000.
# FEach incoming connection is handled by a new ChatHandler.

myServer = ThreadingTCPServer( (’localhost’, 9000), ChatHandler)

# Start this thing up

myServer.serve_forever ()



141

The Client

The client needs multithreading for doing two things simultaneously.

One is that we want the user to type commands, while the other that the user should be
able to see messages from other users.

Using input() will block our flow of control. Likewise, only using recv() (which is meant to
listen for activity on the network socket) will block our flow of control.

Two threads share a single network socket identified as server.

The IncomingThread class is devoted to monitoring incoming messages from that socket.
It executes a while loop that repeatedly waits for more information from the server. When
receiving network traffic, it uses knowledge of our protocol to interpret the meaning. The
symbol ==> helps demarcate the session.

The primary thread begins by establishing the shared socket connection and registering the
user in the chat room using the ADD protocol. It is from the primary thread that the
secondary thread for monitoring incoming network activity is spawned.

The remaining responsibility of the primary thread is to monitor input entered by the local
user via the keyboard, while the secondary thread continues to run independently.

Note, the network protocol uses capitalized words, but the user is not required to.

Here is the code for the ChatClient:

# Program: chatclient.py

# Authors: Michael H. Goldwasser

# David Letscher

7

# This example is discussed in Chapter 16 of the book
# Object—Oriented Programming in Python

i

from socket import socket

from threading import Thread

class IncomingThread (Thread):

def run(self):
stillChatting = True

while stillChatting: # wait for more

incoming data

transmission = server.recv(1024).decode() # 'server’
will be defined globally at line 27

lines = transmission.split(’\n’)[:—1]

i =0

while 1 < len(lines):
command = lines[i].split () [0] # first keyword
param = lines[i][len(command)+1: | # remaining

information



142

if command = ’GOODBYE’ :
stillChatting = False
elif command =— 'NEW’:
print ('=> %s has joined the chat room’ % param)
elif command = ’'LEFT’:
print ('=> %s has left the chat room’ % param)
elif command = 'MESSAGE’ :
1 4+=1 # need next line for
content

print ('=> %s: %s’ % (param, lines[i]))

elif command = ’PRIVATE’:
i4=1 # need next line for
content

print ('=> %s [private]|: %s’ % (param, lines[i]))
=1

”»»

instructions =

Welcome to the chat room.

To quit, wuse syntaz,

quit

To send private message to ’'Joe wuse syntax,

private Joe:how are you?

To send message to everyone, use syntax,

hi everyone!

»»»

server = socket () # shared by
both threads

server.connect( (’localhost’, 9000) ) # could be a
remote host

username = input(’What is your name: ’).strip ()

server .send (( ADD %s\n’ % username) .encode () )

incoming = IncomingThread ()

incoming . start ()



143

print (instructions)
active = True # main thread
for wuser input
while active:
message = input () # wait for more
user input
if message.strip():
if message.rstrip().lower() = ’'quit ’:
server.send ( 'QUIT\n . encode())
active = False
elif message.split () [0].lower() = ’private :
colon = message.index(’:")
friend = message[7:colon|.strip ()
server .send (( 'PRIVATE %s\n%s\n’ % (friend , message[l+colon:
|)).encode() )
else:
server.send (( 'MESSAGE ’ + message).encode())



144

e End of the semester does not mean end of learning

e Go through the website of Carnegie Mellon’s website for their introductory course in Python.
https://www.cs.cmu.edu/~112/schedule.html

e Go through the following website: https://introcs.cs.princeton.edu/python/home/

e Here is Google’s Python class: https://developers.google.com/edu/python/

e A good interactive book: http://interactivepython.org/courselib/static/thinkespy /index.html

e Another useful book: https://books.trinket.io/pfe/

e There are several excellent websites which train applicants for interviews for industry.
http://www.hackerrank.com

http://www.leetcode.com



APPENDIX 1: TKINTER

e TK stands for “Tool kit”.

e The TKinter module (short for “TK interface”) is the standard Python interface to the
TK GUI toolkit from Scriptics (formerly developed by Sun Labs).

e First step is to create a window and a canvas inside that window.

e To create a window, try the following:

#Closely follows
#https://wuww. cs.cmu. edu/"112/index . html
#Some TKinter codes

#create Window . py

from tkinter import x

root = Tk() #Creates a window

#helloWorldl . py
from tkinter import x
root = Tk()

w = Label(root, text = ”"Hello, World!”)
#Creates a Label widget
#A Label widget can display text
#or other images.

w.pack () #Tells the window to pack
#the widget within it.

root . mainloop ()
#Without this we cannot draw into
#the canvas. This will also
#turn on events (keyboards etc.)
#Application window willnot appear
#before you enter the main loop.

print (" Bye.”)




146

#canvasl . py
from tkinter import x

def draw(canvas, width, height):

pass # replace with your drawing code!

def runDrawing (width=300, height=300):
root = Tk()
canvas = Canvas(root , width=width, height=height)
canvas.pack ()#Tells the window to pack
#the canvas within it.
draw (canvas, width, height)
root . mainloop ()

print (" Bye!”)

runDrawing (500, 500)

#hello?2 .py
from tkinter import x

def draw(canvas, width, height):
canvas.create_text (200, 100, text="Hello, World!”
fill="purple”, font="Helvetica 26 bold

underline”)

def runDrawing (width=300, height=300):
root = Tk()
canvas = Canvas(root , width=width, height=height)
canvas . pack ()
draw (canvas, width, height)
root . mainloop ()

print (”Bye!”)

runDrawing (500, 500)

#moreCanvasl . py



def draw(canvas, width, height):
canvas.create_text (200, 100, text="Hello, World!”
fill="purple”, font="Helvetica 26 bold
underline”)
canvas.create_text (200, 100, text="1It is a beautiful day.
anchor = SW,
fill="purple”, font="Helvetica 26 bold
underline”)
#Try various anchors: SE, NE, NW, N, E, W, S
canvas.create_rectangle (10,20, 150,200, fill = ’'green’)

#moreCanvas?. py

def draw(canvas, width, height):
canvas.create_rectangle (10,20, 150,200, fill = ’'green’)
canvas.create_rectangle (40,70, 190,250, fill = ’orange’)

#moreCanvas3 . py

def draw(canvas, width, height):
canvas.create_rectangle (40,70, 190,250, fill = ’orange’)
canvas.create_rectangle (10,20, 150,200, fill = ’green’)

#moreCanvasy . py

def draw(canvas, width, height):

margin = 10

canvas.create_rectangle (margin,margin, width—margin, height—

margin, fill = ’orange’, width=5)
canvas.create_rectangle (10,20, 150,200, fill = ’green’ width
:5)

#How would you change the green rectangle to fit

the center?

2
Y

1t

147

n



148

/ /) / /. / / / / / /. / /) / /. /. / /) /
v; 7 y v; va va 7/ 7/ 7 v; v; va 7/ 7/ va v; 7/ 7/ 7 va

#RGB string (integer values allowed from 0 to 255)

7 H#%02x%02x%02x” % (255, 0,0) #Red color

7 HT02x%02x%02x” % (0,255,0) #Green color
" H#%02x%02x%02x” % (0,0,255) #Blue color

7 #9%002x%02x%02x” % (125,49 ,32) #Some color

#Look for more RGB combinations to find colors

7 7 7 7) 7 7 7 7 7 7, 7 7 7 7 7)

#moreCanvasy . py

def draw(canvas, width, height):
margin = 10

canvas.create_rectangle (margin , margin, width—margin 6 height—

margin, fill = ’orange’, width=5)
canvas.create_rectangle (10,20, 150,200, fill = ’green’,width
=5)
canvas.create_oval (10,20,150,200, fill = ’pink’)

#0r also use tuples for points:
#canvas. create_oval ((10,20),(150,200), fill = ’“pink’)

#How does one draw a circle then?

#moreCanvas6 . py

def draw(canvas, width, height):
margin = 10

canvas.create_rectangle (margin , margin, width—margin 6 height—

margin, fill = ’orange’, width=5)
canvas.create_rectangle (10,20, 150,200, fill = ’green’,width
:5)

canvas.create_oval ((10,20) ,(150,200),fill = ’'pink’)
canvas.create_line (100, 50, 300, 150, fill="red”, width=5)

#This is a line from (100,50) to (300,150)
canvas.create_polygon (100,50,150,80,300,30,200,10, fill="

yellow”)
#This is a polygon joining (100,50),
(150,80),(300,30)
#(200,10) and back to (100,50).



149

#We could also use a list of tuples to draw our polygon as

#canvas. create_polygon ([(100,50) ,(150,80),(300,30),(200,10)],
fill="yellow”)

#Why do you think a list of points is convenient? Think append
or pop.

#Drawing a clock (CMU—Fundamentals of Programming)
#Understand what each line does

import math

def draw(canvas, width, height):
(ex, cy, r) = (width/2, height /2, min(width, height)/3)
canvas.create_oval (ecx—r, cy—-r, cx+r, cy+r, fill="yellow”)
r x= 0.85 # make smaller so time labels lie inside clock face
for hour in range(12):
hourAngle = math.pi/2 — (2+math. pi)*(hour/12)
hourX = c¢x + r * math.cos(hourAngle)
hourY = cy — r % math.sin (hourAngle)
label = str(hour if (hour > 0) else 12)
canvas.create_text (hourX, hourY, text=label, font="Arial
16 bold”)

/ / /) / / /. / / /) / / / / / / / /) /) / /
v: 7/ 7 v; v; va 7/ 7/ 7/ 7 va va va va 7/ 7/ 7/ 7 7 v; v;

#moreCanvas7. py

import math
def draw(canvas, width, height):
(cx, cy, r) = (width /2, height /2, min(width, height)/3)
canvas.create_oval (cx—r, cy—-r, cx+r, cy+r, fill="yellow”)
r = 0.85 # make smaller so time labels lie inside clock face
points =[]
for hour in range(12):
hourAngle = math.pi/2 — (2xmath.pi)=*(hour/12)
hourX = ¢x 4+ r x math.cos(hourAngle)
hourY = cy — r x math.sin (hourAngle)
points.append ((hourX, hourY))

canvas.create_polygon (points, fill = ’violet’)



150

/ / /) / / /. / / /) / / / / / / / /) /) / /
v; 7/ 7 v; v; va 7/ 7/ 7/ 7 v; v; va va 7/ 7/ 7/ 7 y v; v:

#moreCanvas8. py

#To move canvas objects
from tkinter import x
def draw(canvas, width, height):

rectl = canvas.create_rectangle (200,300, 280, 380, fill =~
orange ', width=5)

rect2 = canvas.create_rectangle (10,20, 150,200, fill = ’green’
,width=5)
ovall = canvas.create_oval (10,20,150,200, fill = ’'pink’)

canvas.move(rectl , 100,10)

canvas.move(ovall ;100,10)

#moreCanvas9. py

#Use move and sleep in combination

from tkinter import x

from time import sleep

def draw(canvas, width, height):
ovall = canvas.create_oval (20,0,40,20 ,fill = ’'pink’)
timeDelay = .25
for i in range(48):
sleep (timeDelay)
canvas.move(ovall, 0,10)

canvas.update ()

#moreCanvasl0. py
#Ticking clock

from tkinter import x
from time import sleep

import math



151

def draw(canvas, width, height):
(ex, cy, r) = (width/2, height /2, min(width, height)/3)
canvas.create_oval (ex—r, cy—-r, cx+r, cy+r, fill="yellow”)
r x= 0.85 # make smaller so time labels lie inside clock face
points =[]
for hour in range(12):
hourAngle = math.pi/2 — (2+math. pi)*(hour/12)
hourX = cx + r x math.cos(hourAngle)
hourY = cy — r x math.sin (hourAngle)
label = str(hour if (hour > 0) else 12)
canvas.create_text (hourX, hourY, text=label, font="Arial
16 bold”)
points.append ((hourX, hourY))

tick = canvas.create_line ((cx,cy) ,(cx,cy—r) ,width=3)#The

needle in the clock

timeDelay=0.25
for p in points:
sleep (timeDelay)
canvas.coords (tick ,ex,cy,p[0] ,p[1l]) #Changes coordinates
of tick

canvas.update ()

sleep (timeDelay)
canvas.coords (tick , ¢cx,cy,cx,cy—r) #See what happens if you
don’t have this

777777777777 77 7,

#More Tkinter codes.
#Closely follows: https://effbot.org/tkinterbook
#Also check out:

#https://wuww. python—course . eu/python_tkinter.php
#For CSI32



152

from tkinter import x

#You could also say,

#import tkinter

#and use tkinter.method to work with.
#0r,

#import tkinter as t

#and then wuse t.method to work with.

#Codel

from tkinter import x
def say_hi():

print ( "hi there everyone’)

root = Tk()

frame = Frame(root) #We have created a frame widget.
#A frame is a simple container.

frame . pack () #We pack to make the frame wvisible

#Note, the pack() method returns None.
#So, do not do the following: Frame(root).pack() since this
#would not give you a reference to the Frame you have created.
button = Button (frame, text="Hello World!” , fg = ’red’, command=
say_hi)
#We create a button widget as a child to the frame

#It is labelled "Hello World!”
#fg stands for foreground (here it is red).
#The button takes
button . pack (side=LEFT)
#Now, the button has been packed.
#You could have simply said, button.pack()

# in this case.
root . mainloop ()

#A frame is a rectangular region on the screemn.



153

#Frame widgets are used to group other widgets into complex

layouts .

#Code?2
def say_hi():

print(’hi there everyone’)

root = Tk()
frame = Frame(root)
frame . pack ()
buttonl = Button (frame, text="Hello World!”, fg = ’red’, command=
say_hi)
buttonl . pack ()
#Try various packing positions buttonl.pack()

# buttonl.pack(side = ....) side options are
#top (default), bottom, right, left
button2 = Button (frame, text="Quit’, fg = ’blue’, command=frame.

quit)
#Another button created. Notice its command.
button2.pack () #Try various packing positions button.pack()
# button?2.pack(side = ....)
root . mainloop ()
root . destroy ()
#Some environments require this command to destroy the
window

#Try without the destroy command to see what happens.

#Code3
#Encapsulation approach

7#

from tkinter import x

def say_hi():

print (’hi there everyone’)

class App:



154

def __init__(self, master):

frame = Frame(master)

frame . pack ()

self.buttonl = Button(

frame , text="QUIT” , fg="red”, command=frame. quit)
self .buttonl.pack(side=LEFT)

self .button2 = Button(frame, text="Hello, World”, command=
self.say_hi)
self.button2.pack(side=LEFT)

def say_hi(self):

print (”hi there, everyone!”)

root = Tk()

app = App(root)

root . mainloop ()

root . destroy ()

#The Button widget is a standard widget used to implement various
#kinds of buttons (text, image) and you can associate a

#function or method with a button.

#Here is how to we can specify size

#Try various combinations of commenting below.

from tkinter import x

root = Tk()
#frame = Frame(root, height=200,width=150)
frame = Frame(root)

#frame. pack_propagate (0) #don 't shrink



155

frame . pack ()

buttonl = Button(frame, text="Welcome to my home.How are you?”)

#buttonl = Button (frame, text="Welcome to my home.” , height=2,
width=1)

#buttonl.pack( fill = BOTH, expand =1)

buttonl . pack ()

root . mainloop ()

#Yet another way of wusing Label widget
#Make sure that lotus.gif is in the folder you run this code,
#or use a path to reach the folder.

from tkinter import x

root = Tk()
lotus = Photolmage(file="lotus. gif”)

label = Label(root, image = lotus)
label . pack ()

flower = "’ ’Nelumbo nucifera, also known as Indian lotus,
sacred lotus , bean of India, FEgyptian bean or simply lotus
s one of two extant species of aquatic plant in the
family
Nelumbonaceae. It is often colloquially called a water

A

lily .

label2 = Label(root, text=flower)
label2 .pack(side="bottom”)

def say_like():
print ("1 like lotus.”)

like = Button(root, text="Like”, command=say_like)

like .pack (side="1eft”)



leave = Button(root, text="Quit”, command=root.destroy)

leave .pack(side="right”)
root . mainloop ()

#The Label widget is used to display a text or image.

156

#Another example
from tkinter import x

root = Tk()
lotus = Photolmage( file="lotus. gif”)

label = Label(root, image = lotus)
label . pack ()
def say_like ():

print ("I like lotus.”)

like = Button(root, text="Like” , command=say_like)
like .pack (side="1eft”)

leave = Button(root, text="Quit”, command=root.destroy)

leave .pack(side="right”)

canvas = Canvas(root , width = 200, height = 200)

canvas . pack(side="bottom ")

canvas.create_rectangle (30,50,100,100, fill = ’yellow’)

11/, [/, /

flower = 77 ’Nelumbo nucifera, also known as Indian lotus

sacred lotus , bean of India, FEgyptian bean or simply lotus

)



157

is one of two extant species of aquatic plant in the
family
Nelumbonaceae. It is often colloquially called a water

P

lily .

label2 = Label(root, text=flower)
label2 . pack(side="bottom”)

root . mainloop ()

#The Message widget
from tkinter import x
root = Tk()

simon_garfunkel = "’’I’d rather be a sparrow than a snail,\n
Yes I would, if I could, I surely would. ’’’
song = Message(root, text = simon_garfunkel)
song.config(bg="lightblue’, font = (’Arial’ 50, italic’))

song . pack ()
root . mainloop ()
#This widget 1s used for short text messages.

#Unlike Label, here the font can be changed.

#Message can be multilines.

#The Radio Button widget

from tkinter import x

root = Tk()



158

v=IntVar ()

question= ""’'Who is the author of "War and Peace”?’’’
qLabel = Label(root ,text=question , justify="left ', padx=50)
qLabel . pack ()

choicel=Radiobutton (root, text="Dickens”, padx=50, variable=v,
value=1)
choicel . pack (anchor=W)

choice2=Radiobutton (root , text="Frost”, padx=50, variable=v, value
:2)
choice2 .pack (anchor=W)

choice3=Radiobutton (root, text="Tolstoy”, padx=50, variable=v,
value=3)

choice3 .pack(anchor=W)

def tellAnswer ():

print (v.get())
yourAnswer = Button(root, text="Your Answer”, command=tellAnswer)

yourAnswer . pack (side="bottom”)
root . mainloop ()

#Radio button allows the wuser to choose exactly one of a

#predefined set of options.

#Entry widget and Grid geometry
from tkinter import x
def show_entry_fields():
print (" First: %s\nLast: %s” % (el.get (), e2.get()))

master = Tk()
first = Label(master, text="First”)



159

first .grid (row=0) #notice, we are not packing.
#we are placing first in a grid
second = Label (master, text="Second”)

second . grid (row=1)

el = Entry(master) #This is an entry widget
e2 = Entry(master)

el.grid (row=0, column=1) #grid again...

e2.grid (row=1, column=1)

gbutton = Button(master, text='Quit’, command=master. quit)
#qbutton . grid (row=3, column=0)

gbutton. grid (row=3, column=0, sticky=W, pady=20)

sbutton = Button(master, text='Show’, command=show_entry_fields)
#sbutton . grid (row=3, column=1)

sbutton . grid (row=3, column=1, sticky=W, pady=20)

#lotus = Photolmage(file="0otus. gif”)
#label = Label(master, image = lotus)

#label. grid(row=0, column=2, columnspan=2, rowspan=2)

master . mainloop ()

master . destroy ()
#Entry widgets allow us to get input from the wuser in
#the form of a text string. The content gets scrolled if

#the available display space is not enough.

#The Grid allows us to put widgets in a 2—dimensional table.

#Fvents and Binds

from tkinter import x

root = Tk()



160

def giveChar (event):
print ("You pressed”, repr(event.char))

def giveCoords(event):
frame . focus_set ()
#Keyboard events require focus to be
#sent to the widget, even if you
#do not keep track of the coordinates.

print ("You clicked at”, event.x, event.y)

frame = Frame(root, width=200, height=200)
frame . bind ("<Key>" , giveChar)

#Key> 1s a specific event.
frame . bind ("<Button—1>" | giveCoords)

#< Button—1> 1is a specific event.
frame . pack ()

root . mainloop ()

#Python provides a mechanism to bind functions and methods to
widgets .

#The syntax is widget.bind(event, handler)

#To learn more, see

#https ://www. python—course.eu/tkinter_events_binds . php

#Here is binding with a Canvas object.

import tkinter as tk

def giveCoords(event):
canvas. focus_set ()
#Keyboard events require focus to be

#sent to the widget, even if you



161

#do not keep track of the coordinates.

print ("You clicked at”, event.x, event.y)
def giveChar(event):

#canvas. focus_set ()

print (”You pressed”, repr(event.char))

root = tk.Tk()
canvas = tk.Canvas(root, width = 500, height = 500)

canvas . bind ("<Button—1>" |, giveCoords)
canvas . bind ("<Key>" , giveChar)

canvas . pack ()

root . mainloop ()

#Using class to click and type

from tkinter importx

class MyObj:

def __init__(self):

self.click_event = None

def capture_click(self, event):
canvas. focus_set ()

self.click_event = (event.x, event.y)

def giveChar(self , event):

canvas.create_text (self.click_event ,text= str(event.char)

)



root = Tk()
canvas = Canvas(root , width = 500, height = 500)

obj = MyObj(

canvas.bind ("<Button—1>", obj.capture_click)
canvas. bind ("<Key>" , obj.giveChar)
(

canvas . pack ()

root . mainloop ()

162

from tkinter import Tk, Canvas

def callback (event):

draw (event .x, event.y)

def draw(x, y):
paint.coords(circle , x—10, y—10, x+10, y+10)

def sayHi(event):

paint.create_text (event.x, event.y, text="Hi")

root = Tk()

paint = Canvas(root)

paint . bind ( '<Bl-Motion>", callback)
#Try this instead

#paint. bind(’< Button—1>", callback)
#0r, try this instead

#paint. bind('<Motion>", callback)
#0r

#paint. bind('<Button—1>", sayHi)
#0r

#



paint .

circle

pack ()

= paint.create_oval (0, 0, 0, 0)

root . mainloop ()

163

from tkinter import x

root =
canvas
canvas
canvas
canvas

canvas

canvas.

canvas

Tk()

= Canvas(root , width=400, height=200)

.pack ()

.create_oval (10, 10, 110, 60, fill="grey”)
.create_text (60, 35, text="0Oval”)
.create_rectangle (10, 100, 110, 150, outline="blue”)
create_text (60, 125, text="Rectangle”)
.create_line (60, 60, 60, 100, width=3)

class MouseMover () :

def

__init__(self):

self .item = 0;

self .previous = (0, 0)

def select (self, event):

widget = event.widget # Get handle to canvas

# Convert screen coordinates to canvas coordinates

XC

ycC

= widget .canvasx(event.x);

= widget.canvasx (event.y)

self.item = widget.find_closest (xc, yc)[0] # ID for closest
self .previous = (xc, yc)

print ((xc, yc, self.item))

def drag(self, event):

widget = event.widget

XC

ycC

= widget.canvasx(event.x);

= widget.canvasx(event.y)



164

canvas.move(self.item, xc—self.previous[0], yc—self.previous

[1])

self .previous = (xc, yc)

# Get an instance of the MouseMover object

mm = MouseMover ()

# Bind mouse events to methods (could also be in the constructor)
canvas.bind ("<Button—1>" , mm. select)

canvas . bind ("<B1-Motion>" | mm. drag)

from tkinter import x

def giveCoords(event):

print ("You clicked at”, event.x, event.y)

def draw(canvas, width, height):

oval = canvas.create_oval (10,20,150,200, fill = ’'pink’, tags=’
oval ")
canvas.tag_bind (’oval’, "<ButtonPress—1>"  giveCoords)

#< Button—1> is a specific event.

def runDrawing (width=300, height=300):
root = Tk()
canvas = Canvas(root , width=width, height=height)
canvas.pack ()#Tells the window to pack
#the canvas within it.
draw (canvas, width, height)
root . mainloop ()

print (" Bye!”)

runDrawing (500, 500)



165

#The module ttk makes all the widgets look good.
#Try the following

from tkinter import x
window = Tk()

my_label = ttk.Label (window, text="Hello World!”)

my_label. grid (row=1,column =1)

window . mainloop ()

#These are Messages to display information to a wuser.
#This method returns a string which is typically ignored.

#There are three types of messages.

#Try each one, one after the other. See what happens if you
#try them all at once.

from tkinter import messagebox

messagebox.showinfo (” Information” , "We are in BCC now.”)
messagebox.showinfo (” Error”, ”This is an error. Try again.”)
messagebox . showwarning (" Warning” ;, ”Water is hot. Don’t touch.”)

#Here are some simple yes/no type questions
#The return wvalues are Boolean. If "cancel” is an option and the

#user choses “cancel” button , then None is returned.



from tkinter import messagebox

answer = messagebox.askokcancel (” Question” ,”Do you want to open

this file?”)

166

answer = messagebox.askretrycancel (" Question” , "Do you want to try

that again?”)

answer = messagebox.askyesno (” Question” ;”Do you like Python?”)

answer = messagebox.askyesnocancel (" Question” ;, "Continue playing?”

)

#This is a simple dialog object which is meant
#to ask the wuser for a single data value, either a
#string , integer, or floating point value.

#If the wuser hits 7"Cancel”, then None is returned.

import tkinter as tk

from tkinter import simpledialog

application_window = tk.Tk()

answer = simpledialog.askstring ("Input”, ”"What is your first name?

7
Y

parent=application_window)
if answer is not None:

b

print (" Your first name is 7, answer)
else:

print ("You don’t have a first name?”)

answer = simpledialog.askinteger (”Input”, ”"What is your age?”,
parent=application_window ,
minvalue=0, maxvalue=100)

if answer is not None:

7

print (" Your age is 7, answer)
else:

print ("You don’t have an age?”)

answer = simpledialog.askfloat (”Input”, "What is your salary?”,

parent=application_window ,



167

minvalue=0.0, maxvalue=100000.00)
if answer is not None:

7

print (” Your salary is 7, answer)
else:

print (”You don’t have a salary?”)

200

Widgets and their Purposes

tk . Button, ttk.Button FExecute a specific task; a do this now
command.

tk.Menu Implements toplevel , pulldown, and popup menus.

ttk. Menubutton Displays popup or pulldown menu items when
activated.

tk . OptionMenu Creates a popup menu, and a button to display it.

tk. Entry, ttk.Entry Enter one line of text.

tk. Text Display and edit formatted text, possibly with multiple
lines .

tk. Checkbutton , ttk.Checkbutton Set on—off, True—False selections.

tk. Radiobutton , ttk.Radiobutton Allow one—of—many selections.

tk. Listbox Choose one or more alternatives from a list.

ttk. Combobox Combines a text field with a pop—down list of
values .

tk.Scale, ttk.Scale Select a numerical value by moving a

slider along a scale.

There are three layout managers in the Tkinter module:

Layout Managers and their Description
place You specify the exact size and position of each widget.
Example: label.place(x=20,y=30), or button.place(z=150,y
=50)

pack You specify the size and position of each widget relative

to each other.
Example: closeButton . pack(side=RIGHT, padr=5, pady=5)



grid You place widgets in a cell of a 2—dimensional table

defined by rows and columns.

Ezample: okButton. grid (row=1, column=2).

import tkinter as tk

from tkinter import ttk

def main():
# Create the entire GUI program

program = CounterProgram ()

# Start the GUI event loop

program . window . mainloop ()
class CounterProgram:

def __init__(self):
self .window = tk.Tk()

self . my_counter = None # All attributes should be

initialize in init

self.create_widgets ()

def create_widgets(self):

self .my_counter = ttk.Label(self.window, text="0")

self .my_counter. grid (row=0, column=0)

168

increment_button = ttk.Button(self.window, text="Add 1 to

counter”)

increment_button.grid (row=1, column=0)

increment_button [ ’command’] = self.increment_counter



169

quit_button = ttk.Button(self.window, text="Quit”)
quit_button.grid (row=2, column=0)

quit_button [ ’command’] = self.window. destroy

def increment_counter(self):

self .my_counter |’ text’] = str(int(self.my_counter|[’ text’])
+ 1)
if __name._. = " __main__":
main ()

#You could avoid using ttk. See below.

from tkinter import x

def main():

program = CounterProgram ()
program . window . mainloop ()
class CounterProgram:

def __init__(self):
self . window = Tk()
self . my_counter=None

self.create_widgets ()

def create_widgets(self):
self .my_counter=Label(self.window, text='0")

self . my_counter. grid (row=0,column=0)

increment_button = Button(self.window, text="Add 1",
command=self.increment_counter)

increment_button. grid (row=1,column=0)



170

quit_button = Button(self.window, text="Quit” , command=self

.window . destroy )

quit_button . grid (row=2,column=0)

def increment_counter(self):

self .my_counter |’ text’] = str(int(self.my_counter|[’ text’])

+ 1)

#Here are wvarious reliefs used for buttons.

#Note, relief does not work on certain OS.
from tkinter import x

# from tkinter.ttk tmport x

root = Tk()
root_width , root_height = 200, 500

root . geometry (" {}x{}” .format (root_width , root_height))

bl = Button
b2 = Button

root , text="FLAT” , relief=FLAT)

b4 = Button
b5 = Button

bl.pack()

(

(root, text="RAISED”, relief=RAISED)
b3 = Button(root, text="SUNKEN”,6 relief=SUNKEN)

(root , text="GROOVE’, relief=GROOVE)

(root, text="RIDGE”, relief=RIDGE)



171

root . mainloop ()

"7 In what follows , you will encounter the following:

sticky

When the widget is smaller than the cell, sticky is used to
indicate which sides and

corners of the cell the widget sticks to. The direction is defined
by compass

directions: N, E, S, W, NE, NW, SE, and SW and zero. These could
be a string concatenation ,

for example, NESW make the widget take up the full area of the
cell.

P

import tkinter as tk
from tkinter import ttk

from tkinter import filedialog

class Counter_program () :
def __init__(self):
self .window = tk.Tk()
self .window. title (”tk Examples”)

self.create_widgets ()

self . radio_variable = tk.StringVar ()
self.combobox_value = tk.StringVar ()

def create widgets(self):



172

# Create some room around all the internal frames

self .window | 'padx’] = 5
self .window [ 'pady’] = 5
S

# The Commands frame
# cmd_frame = ttk.LabelFrame(self.window, text="Commands”,
padr=5, pady=5, relief=tk.RIDGE)
cmd_frame = ttk.LabelFrame(self.window, text="Commands” ,
relief=tk .RIDGE)
cmd_frame. grid (row=1, column=1, sticky=tk.E + tk.W + tk.N
+ tk.9)

button_label = ttk.Label(cmd_frame, text="tk.Button”)
button_label. grid (row=1, column=1, sticky=tk.W, pady=3)

button_label = ttk.Label(cmd frame, text="ttk.Button”)
button_label.grid (row=2, column=1, sticky=tk.W, pady=3)

menu_label = ttk.Label(cmd_frame, text="Menu (see examples
above)”)

menu_label. grid (row=3, column=1, columnspan=2, sticky=tk .W
, pady=3)

my_button = tk.Button(cmd_frame, text="do something”)

my_button. grid (row=1, column=2)

my_button = ttk.Button(cmd_frame, text="do something”)

my_button. grid (row=2, column=2)

# The Data entry frame
entry_frame = ttk.LabelFrame(self.window, text="Data Entry

7
Y

relief=tk .RIDGE)
entry_frame. grid (row=2, column=1, sticky=tk.E + tk W + tk.
N + tk.S)

entry_label = ttk.Label(entry_frame, text="ttk.Entry”)
entry_label.grid (row=1, column=1, sticky=tk.W + tk.N)



173

text_label = ttk.Label(entry_frame, text="tk.Text”)
text_label.grid (row=2, column=1, sticky=tk .W + tk.N)

scale_label = ttk.Label(entry_frame, text="tk.Scale”)
scale_label.grid (row=4, column=1, sticky=tk.W)

scale_label2 = ttk.Label(entry_frame, text="ttk.Scale”)
scale_label2.grid (row=5, column=1, sticky=tk.W)

my_entry = ttk.Entry(entry_frame, width=40)
my_entry.grid (row=1, column=2, sticky=tk.W, pady=3)
my_entry.insert (tk .END, ”Test”)

my_text = tk.Text(entry_frame, height=5, width=30)
my_text.grid (row=2, column=2)

my _text.insert (tk .END, ”"An example of multi—line\ninput”)

my_spinbox = tk.Spinbox(entry_frame, from_=0, to=10, width
=5, justify=tk .RIGHT)

my_spinbox. grid (row=3, column=2, sticky=tk.W, pady=3)

my_scale = tk.Scale(entry_frame , from_=0, to=100, orient=
tk .HORIZONTAL,

width=8, length=200)
my_scale. grid (row=4, column=2, sticky=tk.W)

my_scale = ttk.Scale(entry_frame, from_=0, to=100, orient=

tk . HORIZONTAL,
length=200)

my_scale. grid (row=5, column=2, sticky=tk.W)

# The Choices frame

switch_frame = ttk.LabelFrame(self.window, text="Choices”,
relief=tk .RIDGE, padding=6)

switch_frame. grid (row=2, column=2, padx=6, sticky=tk.E +
tk W+ tk.N + tk.S)



174

checkbox_label = ttk.Label(switch_frame , text="ttk.
Checkbutton™)

checkbox_label.grid (row=1, rowspan=3, column=1, sticky=tk.
W + tk.N)

entry_label = ttk.Label(switch_frame , text="ttk.
Radiobutton”)

entry_label.grid (row=4, rowspan=3, column=1, sticky=tk W +
tk.N)

checkbuttonl = ttk.Checkbutton(switch_frame , text="On—off
switch 17)

checkbuttonl . grid (row=1, column=2)

checkbutton2 = ttk.Checkbutton (switch_frame, text="On—off
switch 27)

checkbutton2. grid (row=2, column=2)

checkbutton3 = ttk.Checkbutton (switch_frame, text="On—off
switch 37)

checkbutton3 . grid (row=3, column=2)

self .radio_variable = tk.StringVar ()

self.radio_variable.set(”0")

radiobuttonl = ttk.Radiobutton(switch_frame, text="Choice
One of three”
variable=self.
radio_variable , value="0
)
radiobutton2 = ttk.Radiobutton (switch_frame, text="Choice
Two of three” ,
variable=self .
radio_variable , value="1
)
radiobutton3 = ttk.Radiobutton (switch_frame , text="Choice
Three of three”
variable=self.
radio_variable , value="2
)
radiobuttonl. grid (row=4, column=2, sticky=tk.W)
radiobutton2. grid (row=5, column=2, sticky=tk.W)



175

radiobutton3 . grid (row=6, column=2, sticky=tk.W)

Hm o
# The Choosing from lists frame
fromlist_frame = ttk.LabelFrame(self.window, text="

Choosing from a list”,
relief=tk .RIDGE)
fromlist _frame.grid (row=1, column=2, sticky=tk.E + tk.W +
tk.N + tk.S, padx=6)

listbox_label = tk.Label(fromlist_frame, text="tk.Listbox”

)

listbox_label.grid (row=1, column=1, sticky=tk .W + tk.N)

combobox_label = tk.Label(fromlist_frame , text="ttk.
Combobox™)
combobox_label. grid (row=2, column=1, sticky=tk W + tk.N)

my_listbox = tk.Listbox (fromlist_frame , height=4)
for item in [”one”, "two”, "three”, "four”]:
my_listbox.insert (tk .END, ”Choice 7 + item)

my _listbox . grid (row=1, column=2)

self.combobox_value = tk.StringVar ()

my_combobox = ttk.Combobox(fromlist_frame , height=4,
textvariable=self.combobox_value)

my_combobox. grid (row=2, column=2)

2

my_combobox [ *values’| = (” Choice one”, ”Choice two”,
Choice three”, ”Choice four”)

my_combobox. current (0)

H e
# Menus

menubar = tk.Menu(self.window)

filemenu = tk.Menu(menubar, tearoff=0)

filemenu .add_command (label="Open” ; command=filedialog .
askopenfilename)
filemenu .add_command (label="Save” , command=filedialog.

asksaveasfilename)



176

filemenu.add_separator ()

filemenu .add_command (label="Exit” , command=self .window.
quit )
menubar. add_cascade (label="File” , menu=filemenu)

self .window. config (menu=menubar)

# Quit button in the lower right corner
quit_button = ttk.Button(self.window, text="Quit”, command
=self.window. destroy)

quit_button.grid (row=1, column=3)

# Create the entire GUI program

program = Counter_program ()

# Start the GUI event loop

program . window . mainloop ()

#Simple Interest Calculator

import tkinter as tk

from tkinter import ttk

class Counter_program () :
def __init__(self):
self .window = tk.Tk()
self .window. title (” Simple Interest Calculator”)

self.create_widgets ()

def create_widgets(self):

self .window [ 'padx’] =5
self .window | 'pady’] = 5
main_frame = ttk.LabelFrame(self.window, text="", relief =

tk .RIDGE)



def

177

main_frame . pack ()

principal_label = ttk.Label(main_frame, text = ”Principal
iS $ 7’)
principal_label.grid (row = 1, column = 1)

self . principal _entry = ttk.Entry(main_frame ,width = 40)
self .principal_entry.grid(row = 1, column = 2)
rate_label = ttk.Label(main_frame, text = ”Annual Rate of

Interest in % is )

rate_label.grid(row = 2, column = 1)
self .rate_entry = ttk.Entry(main_frame ,width = 40)
self . rate_entry.grid(row = 2, column = 2)

numYears_label = ttk.Label(main_frame, text = ”Number of
years is 7)

numYears_label. grid (row = 3, column = 1)

self .numYears_entry = ttk.Entry(main_frame ,width = 40)

self .numYears_entry.grid (row = 3, column = 2)

button_calc = ttk.Button(main_frame, text = ”Simple
Interest Calculator” , command = self.interest

)
button_calc.grid (row=4,column = 1, columnspan = 2)

inform_label = ttk.Label(main_frame, text = ”Simple
Interest earned is $7)

inform_label. grid (row=5, column =1)

self . interest_label = ttk.Label(main_frame, text =’7)

self .interest_label.grid (row=5,column =2)

interest (self):

p = float(self.principal_entry.get())

r = float(self.rate_entry.get())/100

t = float(self.numYears_entry.get())
outputString = ”7{0:0.2f}” . format (pxrx*t)
self . interest_label [ text’|] = outputString



178

# Create the entire GUI program

program = Counter_program ()

# Start the GUI event loop

program . window . mainloop ()



APPENDIX 2: REVIEW

(1) Draw an activity diagram for the following code, and write down its output:

X,y=3,2

while (x+y)<18:
print (x,y)
X = X+3
y =y+1

(2) Draw a sequence diagram for the following code:
e Chad is an instance of the class LibraryClient.
e Chad adds fiction! to his cart, by invoking the method chad.add(fiction1).
e The book fictionl’s availability is checked, by using the method fictionl.available()
which returns True value.
e Update chad.bookList by chad.updateBookList(nonfiction2).
e Chad adds nonfiction! to his cart, by invoking the method chad.add(nonfictionl).
e The book nonfiction1’s availability is checked, by using the method nonfictionl.available()
which returns False value.
e Chad adds nonfiction2 to his cart, by invoking the method chad.add(nonfiction2).
e The book nonfiction2’s availability is checked, by using the method nonfiction2.available()
which returns True value.
e Update chad.bookList by chad.updateBookList(nonfiction2).
(3) Design the class, Card. Each instance of a card has the following attributes:
e a suit (Spade, Club, Heart, Diamond),
a value (Ace, King, Queen, Jack, Two through Ten),

e accessor method getSuit,

e accessor method getValue,

e mutator method changeSuit which changes the suit of your card randomly, and

e mutator method changeValue which changes the value of your card randomly.
All the attributes are public. Draw a class diagram of your class, and write a code to
implement this class.

(4) Design the class, Cone. Each instance of the cone has the following attributes:

e baseRadius;

e height;

e accessor method getbaseRadius;

e accessor method getHeight;

e mutator method changeBaseRadius (r) which changes the base radius to r;

e mutator method changeHeight (h) which changes the height to h;

e method getSurfaceArea which returns the surface area of the cone

(SA = 7 - radius - (radius + \/radius? + height?));

- radius® - height
e method getVolume which returns the volume of the cone (SA = Toradts ey ).

3
(5) Chapter 1 Review from the textbook.

179



180

(6) Write a programme that asks the user to write date in the format dd/mm/yyyy and returns
Date-Month-Year. For instance, if the user enters 23/04/2019 then the programme should
return 23-April-2019.

(7) Write a programme that asks the user to provide a positive integer, and returns a string
where every even digit is replaced by * and every odd digit is replaced by an @. For instance,
the number 325348 should return '@*@**’,

(8) Write an interactive programme which asks the user what presents they would like for their
birthday. Make sure that there is a way for the user to be done listing their wishes. Then
print out the user’s wish-list.

(9) Chapter 2 Review from the textbook.

(10) Chapter 3 Review from the textbook (Alternatively, go through your TKinter lectures notes).
(11) Write a programme that asks the user to enter a string. Now print the string in the form of
steps. For instance, if the user enters ”abed”, the output should be
a
ab
abc
abed
(12) The Euler number e is equal to the infinite series Y -, % Write a function eApprozimate(n)
which for each integer n > 0 returns an approximation of e given by Y _, %

1 1 1
(13) The mathematical constant 7 is equal to the infinite series 7 =4 - (1 —3 + 5T + - )

Write a function piApprozimate(n) which returns an n-th approximation

1 1 1 1
v (1‘§+5—?+“'<—1>”2n+1)-

(14) An integer in base 6 uses digits 0, 1,2, 3,4, 5. Write a function intNum(baseSiz) which takes
in a string in base six, and returns its integer value. For instance, intNum(123) should return
51.

(15) An integer in base 16 uses digits 0,1,2,...,9, A, B,C, D, E, F. Write a function intNum (baseSizteen)
which takes in a string in base sixteen, and returns its integer value. For instance, int-
Num(F1) should return 241.

(16) Chapter 4 Review from the textbook.

(17) Write the function kthDigit(n, k) that takes a possibly-negative int n and a non-negative int
k, and returns the kth digit of n, starting from 0, counting from the right. So kthDigit(789,
0) returns 9, kthDigit(789, 2) returns 7, kthDigit(789, 3) returns 0, and kthDigit(-789, 0)
returns 9. Use try-except approach to avoid inappropriate inputs.

(18) Write a programme to determine whether a positive integer is prime. Draw an activity
diagram to explain your programme.

(19) Write the function mostFrequentLetter(s) that takes a string s and returns the letter, in
capital form, that occurs the most frequently in it. Your test should be case-insensitive, to
7A” and "a” are the same. If there is a tie, you should return a string with all the most
frequent letters in alphabetic order. For example, mostFrequentLetter(’This is a beautiful
day’) must return 'AT’.



181

(20) Write the function subChars(s1,s2) which returns True if every character in string sl is
also in string s2 at least once. Note, this function should be case-sensitive; for instance,
subChars(’a’, "AA’) should return False. Further, if string sl is the empty string, then
subChars(s1,s2) must return True. Use this function to write a function sameChars(s1,s2)
which returns True if every character in string sl is also in string s2 at least once, and vice
versa.

(21) Chapter 5 Review from the textbook.

(22) Implement the class Complex numbers. Define the methods __str_, _repr, __add_,
_sub__, __mul__, __truediv__, and morm. All the instance variables are protected. Draw
its class diagram.

(23) Implement the class Modulo(n) numbers of integers modulo n. Make certain that n > 1.
Define the methods __str__, __repr__, _add__, __sub__, __mul__ and __truediv__. Note that
__truediv__ could possibly return undefined results. All the instance variables are protected.
Draw its class diagram.

(24) Implement the class Polynomial(L) of polynomial in variable x with coefficients being
entries of the list L. If the list L is empty, then the polynomial is the zero polynomial.
Define the methods __str__, __repr__, _add__, _sub__, _mul__, derivative, and integrate. All
the instance variables are protected. Draw its class diagram.

(25) Chapter 6 Review from the textbook.

(26) A pallindromic prime is a prime number that is also a palindromic positive integer. Write
a function nthPallindromicPrime which returns the n-th pallindromic prime for a positive
intenger n. Note, nthPallindromicPrime(1) should return 2. The first few pallindromic
primes are:

2,3,5,7,11,101,131, . ..
Use try-except approach to deal with inappropriate input.

(27) Write a program which takes as input a positive integer n, and returns the n-th happy prime.

(28) Write a program which takes as input a list of positive integers, and prints out information
whether the number is one, or a composite number, or a prime number, or a pallindromic in-
teger, or a happy number, or a pallindromic prime, or a happy prime, or a happy pallindromic
prime.

(29) Chapter 7 Review in teh textbook.

(30) Write a programme which accepts a text file and prints the number of characters, number
of words, and number of lines in the file.

(31) Write a programme which accepts a text file with no punctuations, reads it, and writes a
new file with every line reversed. For instance, if the file accepted has a line ”Welcome to
my home”, the new file should have a line "home my to Welcome”.

(32) Chapter 8 Review from the textbook.



182

(33) Draw a class diagram depicting inheritance in the following set-up:

(a) All the attributes are public.

(b) Base class is Polygon with attributes numSides (number of sides, an integer greater
than 2), isRegular (a boolean value, stating whether the polygon is regular), and side-
Length (a list of side-lengths). This class supports two methods, one getNumSides()
(an accessor), and the other perimeter() which represents the perimeter of the polygon.

(c) The child class is Triangle is obtained by setting numSides to 3, and this class augments
the Polygon class by a method getArea() using Heron’s formula for area of a triangle.
The area of a triangle with side-lengths a, b, ¢ is obtained as follows:

Step 1: First calculate s = (a + b+ ¢)/2, (half the perimeter);
Step 2: Now, the area A = /s(s —a)(s — b)(s — ).
Now write a code to implement the classes.

(34) Implement the following classes using inheritance, augmentation, and overriding as follows:

Employee
#name: str
#hourlyWage: float
#numHours: int

#getName(): str
#getHourlyWage(): float

i

FullTime PartTime
+overTime: bool +partTime: bool
+getWeeklyIncome(): float +getHourlyWage(): float

+getWeeklyIncome(): float

(a) Here, name represents the full name, hourlyWage represents the hourly wage, and
numHours represents the number of hours worked by the Employee instance. The
instance methods getName() and getHourlyWage() are accessors for the Employee
instance.

(b) A FullTime instance is expected to have numHours > 40 per week. For every over-time
hour, the employee gets paid 120% of their regular hourly wage. Define the method
getWeeklyIncome() accordingly.

(¢) A PartTime instance is expected to have numHours < 40 per week, and will get
paid only 85% of their regular hourly wage. Override the method getHourlyWage()
accordingly for this class. Further, define get WeeklyIncome() for this class accordingly.

(35) Chapter 9 Review from the textbook.

(36) Rewrite the DNA to RNA transcription of section 4.2 (page 135 of the textbook) using
recursion.

(37) Draw a trace: Problem 11.27 from page 395 of the textbook.

(38) Draw a trace: Problem 11.28 from page 395 of the textbook.

(39) Write a recursive function reverseConcatenate that takes as input a list with string entries
and returns one long string which is the concatenation of all the string entries in reverse

)

order. For instance, reverseConcatenate([’how’, “are’, 'you?’]) should return ’you?arehow’.



183

(40) Solve the Towers of Hanoi problem.

(41) TKinter : Draw a tree using recursion.

(42) TKinter : Draw a pyramid (one rectangle in each level) using recursion.

(43) Chapter 11 Review from the textbook.

(44) Write an interactive function which asks the user for a name, pet’s name, and the age of the
pet. This function should return a list named patients in which each entry is a tuple (name,
pet’s name, pet’s age).

(45) Write an interactive function which asks the user for a name, and some names of friends.
This function will return a dictionary named friends which associates to a name-key a set

of friends. For instance, here is an interaction:

>>> Please give me a name (<Enter> for done): Jane

>>> Give the name of one of Jane’s friend (<Enter> for done): Holly
>>> Give the name of one of Jane’s friend (<Enter> for done): Hugh
>>> Give the name of one of Jane’s friend (<Enter> for domne):

>>> Please give me a name (<Enter> for done): Joe

>>> Give the name of one of Joe’s friend (<Enter> for done): Matt
>>> Give the name of one of Joe’s friend (<Enter> for done):

>>> print (friends) #This should return a dictionary looking like
>>> {’Jane’: {’Holly’, "Hugh’}, ’Joe’:{ Matt’} }

(46) Chapter 12 Review from the textbook.

(47) TKinter : Draw a shrinking orange circle. That is, draw a large orange circle, which shrinks
in size with a time delay of 0.25 seconds until it disappears.

(48) TKinter : Given an integer n greater than or equal to 3, draw a regular n-gon, coloured
violet.

(49) TKinter : Draw a Stop Sign on a canvas. The Stop Sign is a regular octagon coloured red
with a white ”"STOP” written in its center.

(50) TKinter : Write a GUI compound interest calculator. The relevant form:
P = Principal in dollars to be invested;
r = yearly rate of interest written in decimal;
n = number of times the interest is to be compounded each year;

t = number of years the principal is invested.
nt
I=P <1 + Z) —P The final interest.
n

(51) TKinter : Write a GUI programme which draws a tiny blue circle on a canvas wherever
we click on the canvas.
(52) Chapter 15 Review from the textbook.
(53) Use wrllib.request to write a short code which would download the webpage
http:/ /www.bee. cuny. edu/academics/learning-commons/ and write the contents to a file
named webpage.html.
(54) Write a persistent echo server hosted on your localhost.



184

(55) Write a simple echo server which returns three copies of a message sent to it. Host this
server on your localhost.
(56) Chapter 16 Review from the textbook.



