
LECTURE NOTES. CSI 32. INTRODUCTION TO
COMPUTER PROGRAMMING 2

BASED ON OBJECT-ORIENTED PROGRAMMING IN PYTHON, BY

GOLDWASSER AND LETSCHER

(http://cs.slu.edu/∼goldwamh/oopp/)

1

1. Data and Types: Functions and Algorithms, Objects and Classes: OO Design

(sections 1.1, 1.2, 1.3, 1.4, 1.5)

• Two aspects of computing: Data and Operations.

• Data and Types:

• Definition of Data in the context of computing:

• The quantities, characters, or symbols on which operations are performed by computers and

other automatic equipment, and which may be stored or transmitted in the form of electrical

signals, records on magnetic tape or punched cards, etc.,.

• Within modern computers, all information is represented as a collection of binary digits,

also known as bits.

• Each bit can be set to 0 or 1.

• Combining many bits a wider variety of patterns can be stored to represent pieces of infor-

mation.

• A byte is a set of 8 bits. It can represent 28 = 256 different values. With millions of bits,

large amount of data can be stored.

• Much of the data being used by a computer processor is stored in the computer’s main

memory, referred to as RAM (random access memory).

• Information is high-level abstraction, while data is a low-level representation of such

information, capable of being stored and manipulated by a computer. That is, there could be

several ways of representing information – each such choice of representation is an encoding

(example, JPG and GIF formats are different encodings of the same picture, or the same

information).

• Data types:

• Though all data is stored as a sequence of bits, it would be cumbersome to specify the exact

encoding for every piece of data.

• Higher-level abstractions are supported through the definition of data types.

• Example, integer, floating point, string, or user-defined types.

• Numbers, characters, dates, lists exist as pre-defined data types. These are often called the

primitive or built-in data types.

• User-defined types are built by programmers who may want data abstractions that are

specific to his/her own implementation. These are Classes in Python.

• Operations, Functions, and Algorithms:

• The hardware component that controls the entire computer is known as its central pro-

cessing unit (CPU). Commonly supported instructions are: loading data from main mem-

ory into the CPU, storing data from CPU to the main memory, performing basic arithmetic

operations or checking basic boolean conditions.

• Just as data types can be built-in or user-defined, operations are also built-in or user-defined.

• In addition, there are control structures which determine when other instructions are

executed or repeated (eg. if-elif-else, for-loops, while-loops).

• Algorithms:

• A step-by-step procedure for solving a problem or accomplishing some end especially by a

computer is called, an algorithm.

1

2

• Example: Find the greatest common divisor (gcd) of two positive natural numbers.

• Here is a flow-chart – discuss this algorithm.

• Here a flow-chart of the Euclid’s algorithm for computing the gcd of two non-negative

integers, both non-zero. Go through this procedure for at least two concrete examples.

3

• High-Level Programming Languages:

• Every piece of software is executed by the computer’s CPU.

• The CPU provides core support for the most primitive data types (eg. integers, floats) and

instructions (eg. addition).

• Each CPY has its own programming language called, the machine language.

• Because a machine language supports only the most basic data types and operations, it is

often described as a low-level programming language.

• Software is typically developed with high-level programming languages.

• The computer’s hardware only understands the low-level language. A programmer programs

in a high-level language and creates one or mote text files that are called source code.

• In order to be executed, that high-level source code gets translated into equivalent low-level

instructions.

• These translators are in two forms: compilers and interpreters.

• A compiler takes the entire original code and translates it into a low-level program known

as an executable. This executable can then be run directly by the computer.

• An interpreter proceeds piecewise, translating an instruction, executing it, then translating

the next instruction, and so on.

• There are hundreds of high-level programming languages. Some of the most commonly used

ones: Ada, C, C++, C#,Cobol, Fortran, Java, etc.,.

• Each language has its own syntax and semantics.

• The syntax of a language is the precise set of rules regarding how character, words, and

punctuation should be used.

• A compiler or interpreter reports a syntax error if your code is not formatted according

to the rules of the language you use.

• The semantics mean the underlying meaning of statements written in your code.

• If a code is written which is syntactically correct, but does not produce the desired result,

then most likely there is a semantic error. For instance, if you want the quotient when 12 is

divided by 5, you should type in 12//5 rather than 12/5 (what is the difference?).

• Types of Errors:

• Syntax Error: Try the following on your Python shell:

p r i n t (” He l lo)

• Compare it with

p r i n t (” He l lo . ”)

p r i n t (”How are you ?)

• Runtime Error: Here, the syntax is correct but the interpreter is unable to run your code

to completion. For example:

p r i n t (1/0)

• Logical Error: Here, the syntax is correct, and the interpreter is able to run your code to

completion, but you made a logical error at some point. For example,

p r i n t (”2+2 +10”)

4

• Logical errors are the hardest to find because it is the author of the code who is responsible

for the error. Python will find its own errors, but the author of the code will have to find

his/her own errors.

• Please do the following now:

• Sign up on codelab.

REGISTRATION (FOR STUDENTS):

1) Go to www.turingscraft.com

2) Click ”Register for CodeLab” and follow the instructions.

3) When prompted, enter the Section Access Code: UNAB-26799-HSGP-39

• If you wish to use your home computers, download Python 3.7 from www.python.org. You

will see versions for various Operating Systems. Choose the appropriate installer. Run the

installer and click through the prompts (default options are fine). The application ”IDLE”

will be installed by default.

• After installation you can run IDLE by clicking:

Start → All Programs → Python 3.7 → IDLE (Python GUI)

Or, if you are on Mac, go to

Applications → Python 3.7 → IDLE

• Try IDLE. Our lab computers have IDLE set up.

• An easy but limited option is Brython. Check out, https://brython.info/tests/editor.html

• Another option is to use jupyter : Check out, https://jupyter.org/install

• Sign up for Dropbox at https://www.dropbox.com.

(Do not use https://www.dropbox.com/business – this one requires payment).

• We will be using Dropbox for homework and test submissions. Create a folder ”Spring2019-

CSI32-Assignments-FirstName-LastName” and share it with uma.iyer@bcc.cuny.edu

5

• The Object-Oriented Paradigm:

• Object Oriented Programming (OOP) is the process of modeling data and operations in a

paired form, rather than as separate entities.

• Objects of the same class share a common encoding of their underlying data representation

and support a common set of operations.

• A single object from a given class is termed, an instance of that class.

• Internally, each instance is represented by one or more pieces of data, called attributes, or

data members, or fields, or instance variables.

• For instance, jane = Person(’F’, 25, 32000), is an assignment where jane is assigned an

instance of the Person class. This object possibly has instance variables gender (jane.gender

= ’F’), age (jane.age = 25), anninc (the annual income, jane.anninc = 32000).

• Note, jen = Person(’F’, 25, 32000), is another assignment, where jen is assigned an instance

of the Person class. Note, a new object is created when we invoke the constructor Person

again even when the attributes may be identical.

• Taken together, the attribute values of a particular instance comprise the state informa-

tion. Note that, over time, the state information may change.

• The operations suported by instances of a class are known as methods, or actions, be-

haviors, or member functions.

• For instance, jane.vote(), jen.info(), jane.addincome(2000), or jen.addage(3) are various

methods with or without parameters.

• Collectively, the attributes and methods of an instance are called its members.

• Note that objects can interact with other objects. Say, in addition to the Person class, we

also had a Dog class.

• Here is a sequence diagram demonstrating interactions between jane and spot (an instance

of the Dog class). Note that jane is the caller and spot is the callee.

• The vertical line drawn down from the label represents the chronological lifespan of that

object.

• Each solid arrow represents the invocation of a method, oriented from the caller to the callee.

• When a method is called, we say that the flow of control is passed from the caller to the

callee.At that time, the caller waits until the callee completes the action.

6

• A white rectangle on the callee’s side denotes the duration of time when tat action is being

performed. At its conclusion, the flow of control is passed back to the caller, as diagrammed

with a dashed line in our figure.

• Here is another sequence diagram:

• This represents calling a method with a parameter. Presumably, spot.fetch(slippers) returns

a value.

• The overall agreement regarding the expected parameters and return value for a method is

called its signature.

• Some methods do not cause any change in the object’s current state, but are used by

the caller to request information about that state. Such methods are commonly termed

accessors or inspectors and necessitate the use of a return value. Example, jane.getage()

• A method that affects the state of the callee is termed a mutator. For example, jane.addage(3).

• Some methods are neither accessors nor mutators. For instance, spot.fetch(slippers) pre-

sumably does not change the values of instance variables of spot.

• The Design of a Television Class:

• An object from the Television class is an instance of this class.

• When an object is created, the system sets aside a particular chunk of memory for storing

the attributes values that represent the state of the new instance. Some attributes do

not change (example, brand and model of a television), while some other attributes are

changeable (example, volume and channel).

• The desired behaviors of a television object must include volumeUp, volumeDown, mute,

channelUp, channelDown, setChannel to a number etc.,.

• Here is a Television class diagram:

• Note that toggleMute does not simply set volume to zero. The mute button when pressed

twice, should return volume to what it was before the TV got muted. Thus, the attribute

muted is set either to True or False, while toggleMute method reverse the setting for the

muted attribute.

7

• We will return to this example later in the course.

• The Design of a Student Registration System:

• Note that the Television class was self contained. Typically though, we have interactions

between objects from various classes.

• For example, here are classes where various objects are expected to interact: Student, De-

partment, Course, Professor, Schedule, Transcript, and Major.

• There are relationships between these objects. For instance, a Course has. teacher, a

Schedule has courses.

• Here is a sequence diagram for invocation of bob.enroll(cs102). Note, bob.enroll(cs102) in

turn triggers bobSch.addCourse(cs102). The former is completed only after the latter is

reutrned.

• In reality, the picture might be more complicated. For instance, here is a refined sequence

diagram for invocation of bob.enroll(cs102):

8

• Here is a sequence diagram with more steps (more realistic):

• Class Hierarchies and Inheritance:

• As we start the modeling of different classes, we should consider how those classes compare

to one another.

• By identifying commonalities, we can organize a class hierarchy.

• Here are class diagrams for Student and Professor classes.

9

• Now here is a hierarchy showing Student and Professor classes derived from Person class:

• Note that the Person class is a more generic class than Student and Professor classes, based

on their commonalities.

• When modeling the Student class relative to thePerson class, a Student instance inherits

all of the attributes and methods of the Person class. Similarly, the Professor class inherits

from Person and then additional attributes and methods are specified.

• The Person class is the parent class or the base class of Student class (and Professor

class).

• The Student class (or the Professor class) is the child class or subclass of Person class.

• The relationship between a parent and child class is often termed an is-a relationship, in

that every Student is a Person, but the converse is not true. Every Professor is a Person,

but the converse is not true.

• Notice the difference between an is-a relationship and has-a relationship. A Student has

a Transcript, a Course has a Professor (no inheritance is implied). In a has-a relationship

a class has attributes that are instances of another class.

• A drawing package:

• We consider the design of a system for creating and displaying a variety of graphical objects.

• Start our design with a generic Drawable class.

• While we expect to be able to create c = Circle(Point(5,5), 3), we do not expect to create

d = Drawable(...).

• Such a class that is designed to serve as a parent class in our inheritance hierarchy, unifying

the common traits and behaviors, is known as an abstract class.

10

• The design of our Drawable class is given here (what do you expect the attributes and

methods to mean?):

• Note that within drawable objects, some are fillable and some not. Some drawable objects

have no shape (example texts) and some have shapes. There are many such considerations

one has to think about before we create our hierarchy. It helps to write down the design

structure before classes are built.

Object-Oriented Programming in Python, © Copyright 2014 by Michael H. Goldwasser and David Letscher

24 Chapter 1 Cornerstones of Computing

Text

message fontColor

fontsize

getMessage() getFontColor()

setMessage(message) setFontColor(color)

getFontSize() draw()

setFontSize(fontsize)

Segment

start end

getStart() setPoints(startPt, endPt)

getEnd() draw()

Square

getSize() setSize(s)

Circle

radius

getRadius() draw()

setRadius(radius)

FillableShape

fillColor

getFillColor() setFillColor(color)

Shape

borderColor

borderWidth

getBorderColor()

setBorderColor(color)

getBorderWidth()

setBorderWidth(width)

Rectangle

width height

getWidth() getHeight()

setWidth(width) setHeight(height)

draw()

Polygon

points

addPoint(point, index) deletePoint(index)

setPoint(point, index) clearPoints()

getPoint(index) getNumberOfPoints()

draw()

Drawable

depth transformation referencePoint

move(dx, dy) rotate(angle) getReferencePoint()

moveTo(x, y) scale(factor) adjustReference(dx, dy)

getDepth() flip(angle) draw()

setDepth(depth) clone()

FIGURE 1.13: A proposed hierarchy of drawable objects.

2. Unified Modeling Language (UML)

• The Unified Modeling Language (UML) is a standard visual modeling language in-

tended to be used for modeling business and similar processes, and analysis, design, and

implementation of software-based systems.

• UML is a common language for business analysts, software architects and developers used

to describe, specify, design, and document existing or new business processes, structure and

behavior of artifacts of software systems.

• UML is a way of visualizing a software program using a collection of diagrams.

• The notation has evolved from the work of Grady Booch, James Rumbaugh, Ivar Jacobson,

and the Rational Software Corporation to be used for object-oriented design.

• It has since been extended to cover a wider variety of software engineering projects.

• Today, UML is accepted by the Object Management Group (OMG) as the standard for

modeling software development.

• The current UML standards call for 13 different types of diagrams, classified into two distinct

groups:

• Structural UML Diagrams (or the Static View): Structure diagrams emphasize the

things that must be present in the system being modeled. Here we have the following:

(1) Class diagram

(2) Package diagram

(3) Object diagram

(4) Component diagram

(5) Composite structure diagram

(6) Deployment diagram

• Behavioral UML Diagrams (or the Dynamic View): Behavior diagrams emphasize

what must happen in the system being modeled. Here we have the following:

(1) Activity diagram

(2) Sequence diagram

(3) Use case diagram

(4) State diagram

(5) Communication diagram

(6) Interaction overview diagram

(7) Timing diagram

• To learn more about UML refer to

https://www.smartdraw.com/uml-diagram/

https://www.uml-diagrams.org/

https://en.wikipedia.org/wiki/Unified Modeling Language

• In our course we will learn to draw the most basic forms of Class diagram, Activity dia-

gram, Sequence diagram, and State diagram. We will use Dia Diagram Editor to draw

these diagrams. Please download Dia from http://dia-installer.de/download/index.html for

your home computer.

12

13

• Class Diagram

• A class diagram is a static structure diagram that describes the structure of a system by

showing the system’s classes, their attributes, operations (methods), and the relationships

among objects.

• A class is represented by a rectangle containing three compartments:

The top compartment contains the name of the class. It is printed in bold and centered,

and the first letter is capitalized.

The middle compartment contains the attributes of the class. They are left-aligned and

the first letter is lowercase. The attributes have specific visibility (Public, Private, Protected,

Package).

The bottom compartment contains the operations the class can execute. They are also

left-aligned and the first letter is lowercase. Methods are also assigned visibility.

• Here is a template of a class:

• Visibility: Public visibility means the attribute can be accessed from everywhere. Private

attribiutes can be accessed only from within the class. Protected attributes can be accessed

by the class and its children classes, while Package or Default attributes can be accessed by

any class within the package of your class.

• For a concrete example:

14

• Inheritance is denoted by a hollow arrow starting from a child class to its parent class.

• Here is a concrete example:

• As an example, pretend that you are a business owner with some employees and clients.

• Design an abstract class Person, with some basic attributes and methods.

• Now design two child classes, Employee, and Client with their respective attributes and

methods.

• Draw a UML diagram to represent these interactions.

15

• Sequence Diagram

• A sequence diagram (or an event diagram or event scenario) is a visual depiction of interac-

tions (methods) between objects.

• Vertical lines (lifelines) are drawn under each object involved in the interaction. Horizontal

arrows represent the messages exchanged between them, in the order in which they occur.

• Here is a simple example:

• Now, draw a sequence diagram depicting the interaction between three objects jane:Employee,

mika:Client, and mikaOrder:Order.

(1) Jane asks Mika for Mika’s order.

(2) Mika adds to her order a salad.

(3) Mika’s order returns True.

(4) Mika adds to her order a wine.

(5) Mika’s order asks for proof of age.

(6) Mika does not have a proof of age.

(7) Mika’s order returns False.

(8) Mika adds juice to her order.

(9) Mika gives order to Jane.

16

• Activity Diagram

• Activity diagrams are graphical representations of workflows (or flowcharts) of stepwise

activities and actions, with support for choice, iteration, and concurrency.

• In an activity diagram,

ellipses represent actions;

diamonds represent decisions;

a black circle represents the start (initial node);

an encircled black circle represents the end (final node);

bars represent the start (split) or end (join) of concurrent activities;

rectangles represent objects, classes.

• Here is an activity diagram to find the gcd of two positive integers using the inefficient

guessing approach:

• Draw an activity diagram to find the gcd of two positive integers using Euclid’s algorithm.

17

• State Diagram

• A state diagram shows the behavior of classes in response to external stimuli.

• A state diagram describes the behavior of a single object in response to a series of events in

a system.

• A state diagram is also sometimes known as State Chart, or State Machine, or State Tran-

sition Diagram.

• In general, state diagrams are studied for an entire system, or a subsystem or one particular

object.

• A state diagram has three important building blocks: State, Event (which triggers an action

or a transition), Transition.

• The State is the status of the system or object at the given time. States may also have

activities or actions within themselves.

• The Event is the trigger which causes the state to change. This event could be internal or

external.

• Transition is the change in state.

• Notations:

• Initial State: This is denoted by a solid filled in circle. Initial state is a pseudo-state. Its

purpose is to signify the position from where the diagram starts. There may or may not be

a transition to transition from this initial state to the first system state.

• State: This is represented by a rectangle with smoothened vertices (rounded corners). The

name of the state is written inside, on the top. For instance, an activity is an operation that

the object has to perform when it is in a given state.

• Transition: This is represented by a simple arrow, starting from the source state and

pointed towards the transitioned new state. Each transition is labeled by an event or a

trigger resulting in an action. The notation used here is Event/Action. Sometimes, there is

a guard condition. This guard condition controls whether the action is performed or not.

The condition is written in brackets [].

• Final State: This is denoted by a solid filled in circle with a concentric circle around it.

Transitioning to this state represents the completion of the state diagram.

18

• State diagrams are often confused with activity diagrams or flowcharts. Note, state machine

performs actions in response to events. Flowcharts do not need explicit events. Secondly, a

flowchart illustrates the processes that are executed in the system. A state diagram shows

the actual changes in state (not the processes or commands that created those changes).

• Note, all synchronization bars must be paired, so that all the forks eventually join and come

back to one transition.

19

• Here is a short example: State Transition Diagram for a Shopping Cart.

• Here is an example that you could try:

• Processing Order:

• The first state of the order is “Unpaid”.

• We go through a Decision Point which allows us three options: “100% Cash paid”, “100 %

Card paid”, a fork (going through “50% Cash paid”, and “50% Card paid”).

• The three above options (fork goes through synchronization bars to join) lead to “Paid”

state.

• Do not forget the initial and final states.

3. Built-in Python classes (list, str) and numeric types (int, long, float)

(sections 2.2, 2.3, 2.4, 2.5)

• We recall a built-in Python class, the list.

• An empty list is constructed using the constructor of the list class. Consider the following

assignment statement:

g r o c e r i e s = l i s t ()

• Notice that the list you have created is an empty list. The construction of a new object

from a given class is called instantiation.

• The word groceries is the identifier – it is the name. An identifier must consist of letters,

digits, or underscore characters, yet a digit cannot be the first character of an identifier.

• The identifiers are case sensitive. Further, keywords of Python cannot be used as identifiers.

• An assignment statement is used to assign a label to an object. Here is the result of the

assignment statement:

• To see how our list looks like, type in

g r o c e r i e s

• Now we can start populating our list, groceries using the append method. Note how an

object method is called:

g r o c e r i e s . append (‘ bread ’)

g r o c e r i e s . append (‘ milk ’)

g r o c e r i e s . append (‘ cheese ’)

• Now see how our list groceries looks like.

• What happens if you try again

g r o c e r i e s . append (‘ bread ’)

• Note that there is a more convenient, a literal form to instantiate a list as:

g r o c e r i e s 2 =[‘ bread ’ , ‘ milk ’ , ‘ cheese ’ , ‘ bread ’]

• Now build any list(s) you like, and implement every method given on the next page:

20

Object-Oriented Programming in Python, © Copyright 2014 by Michael H. Goldwasser and David Letscher

42 Chapter 2 Getting Started in Python

Behaviors that modify an existing list (i.e., mutators)

data.append(val) Appends val to the end of the list.

data.insert(i, val) Inserts val following the first i elements of the list.

data.extend(otherlist) Adds the contents of otherlist to the end of this list.

data.remove(val) Removes the earliest occurrence of val found in the list.

data.pop() Removes and returns the last element of the list.

data.pop(i) Removes and returns the element with index i.

data[i] = val Replaces the element at index i with given val.

data.reverse() Reverses the order of the list’s elements.

data.sort() Sorts the list into increasing order.

Behaviors that return information about an existing list (i.e., accessors)

len(data) Returns the current length of the list.

data[i] Returns the element at index i.

val in data Returns True if the list contains val, False otherwise.

data.count(val) Counts the number of occurrences of val in the list.

data.index(val) Returns the index of the earliest occurrence of val.

data.index(val, start) Returns the index of the earliest occurrence of val that can be

found starting at index start.

data.index(val, start, stop) Returns the index of the earliest occurrence of val that can be

found starting at index start, yet prior to stop.

dataA == dataB Returns True if contents are pairwise identical, False otherwise.

dataA != dataB Returns True if contents not pairwise identical, False otherwise.

dataA < dataB Returns True if dataA is lexicographically less than dataB, False

otherwise.

Behaviors that generate a new list as a result

data[start : stop] Returns a new list that is a “slice” of the original, including

elements from index start, up to but not including index stop.

data[start : stop : step] Returns a new list that is a “slice” of the original, including

elements from index start, taking steps of the indicated size,

stopping before reaching or passing index stop.

dataA + dataB Generates a third list that includes all elements of dataA

followed by all elements of dataB.

data * k Generates a new list equivalent to k consecutive copies of data

(i.e., data + data + ... + data).

FIGURE 2.2: Selected list behaviors, for prototypical instances data, dataA, and dataB.

22

• Try the following and see what happens (explain the result):

my l i s t = [3 , 2 , 1 4 , 5 , 6 , 2]

my l i s t = myl i s t . s o r t ()

my l i s t

• Try the following and see what happens (explain the result):

g r o c e r i e s = [‘ milk ’ , ‘ bread ’ , ‘ c e r ea l ’]

g r o c e r i e s = g r o c e r i e s . s o r t ()

g r o c e r i e s

• Please watch out for such unexpected results when you go through the list-methods given

on the previous page.

23

• Other Sequence Classes: Strings and Tuples.

• Notice, lists are mutable objects. They can change in place.

• Examples of immutable classes: str class (the string class), and the tuple class.

• The str class is designed for sequences of characters.

• A tuple class is an immutable version of the list class. It represents a sequence of arbitrary

objects, yet a sequence that cannot be altered.

• Although list, str, and tuple are three distinct classes, they support many of the same

operations. For instance, data[i] retrieves the element at index i.

• Such a generic syntax is called polymorphic.

• The constructor for the string class is invoked as str() which creates an empty string. Note,

a string is immutable. So we cannot populate a string.

• So, we create a string object using literal form. For example:

knockknockjoke = ”Knock Knock \n Who’ s the re ? \n Banana . . . ”

• Do you see why double-quotes were used in the example above?

• Strings can be compared to each other; keep in mind that strings are case sensitive.

• ‘Hello’ == ‘hello’ will return False.

• String inequalities are <,>,<=, >= based on lexicographical order. Note, though uppercase

letters come before smaller case letters. Thus, ‘Z’ < ‘a’.

• On the next couple of pages we list several string methods. Before we do that, what do you

think is the outcome of the following? Why?

person = ‘ Al ice ’

person = person . lower ()

person

• Now construct a few strings, and implement every method from the next two pages:

Object-Oriented Programming in Python, © Copyright 2014 by Michael H. Goldwasser and David Letscher

56 Chapter 2 Getting Started in Python

Behaviors that return information about the existing string s

len(s) Returns the current length of the string.

s[i] Returns the character at index i.

pattern in s Returns True if the given pattern occurs as substring of s, False

otherwise.

s.count(pattern) Returns the number of distinct occurrences of pattern within s.

s.find(pattern) Returns the index starting the leftmost occurrence of pattern

within s; if pattern is not found, returns −1.

s.find(pattern, start) Returns the index starting the leftmost occurrence of pattern found at

or after index start within s; if no such pattern is found, returns −1.

s.rfind(pattern) Returns the index starting the rightmost occurrence of pattern

within s; if pattern is not found, returns −1.

s.rfind(pattern, start) Returns the index starting the rightmost occurrence of pattern found

at or after index start within s; if no such pattern is found, returns

−1.

s.index(pattern) Same as s.find(pattern) except causes ValueError if not found.

s.index(pattern, start) Same as s.find(pattern, start) except causes ValueError if not found.

s.rindex(pattern) Same as s.rfind(pattern) except causes ValueError if not found.

s.rindex(pattern, start) Same as s.rfind(pattern, start) except causes ValueError if not found.

s.startswith(pattern) Returns True if s starts with the pattern, False otherwise.

s.endswith(pattern) Returns True if s ends with the pattern, False otherwise.

s.isalpha() Returns True if all characters are alphabetic, False otherwise.

s.isdigit() Returns True if all characters are digits, False otherwise.

s.isspace() Returns True if all characters are whitespace, False otherwise.

s.islower() Returns True if all alphabetic characters are lowercase, False

otherwise.

s.isupper() Returns True if all alphabetic characters are uppercase, False

otherwise.

s == t Returns True if strings are identical, False otherwise.

s != t Returns True if strings are not identical, False otherwise.

s < t Returns True if string s is alphabetized before t, False otherwise.

FIGURE 2.5: Selected behaviors supported by Python’s str class (continued on next

page).

Object-Oriented Programming in Python, © Copyright 2014 by Michael H. Goldwasser and David Letscher

Section 2.3 Other Sequence Classes: str and tuple 57

Behaviors that generate a new string as a result

s.capitalize() Returns a capitalized version of the original string.

s.lower() Returns an entirely lowercase version of original.

s.upper() Returns an entirely uppercase version of original.

s.center(width) Returns a new string of the specified width containing characters of the

original centered within it.

s.ljust(width) Returns a new string of the specified width containing characters of the

original left justified within it.

s.rjust(width) Returns a new string of the specified width containing characters of the

original right justified within it.

s.replace(old, new) Returns a copy of s, with every occurrence of the substring old replaced

with new.

s.strip() Returns a copy of s with leading and trailing whitespace removed.

s.strip(chars) Returns a copy of s with as many leading and trailing characters from

the string chars removed.

s[start:stop] Returns a new string that is a “slice” of the original, including characters

of original from index start, up to but not including index stop.

s[start:stop:step] Returns a new string that is a “slice” of the original, including characters

of original from index start, taking steps of of the indicated size,

continuing up to but not including index stop.

s + t Generates a third string that is the concatenation of the characters of s

followed by the characters of t.

s * k Generates a new string equivalent to k consecutive copies of s

(equivalent to s + s + ... + s).

Behaviors that convert between strings and lists of strings

s.split() Returns a list of strings obtained by splitting s into pieces that were

separated by whitespace.

s.split(sep) Returns a list of strings obtained by splitting s into pieces that were

separated by sep.

s.join(stringSeq) Returns a string that is a concatenation of all elements of stringSeq with

a copy of s inserted between each pair.

FIGURE 2.5 (continuation): Selected behaviors supported by Python’s str class.

26

• Tuples:

• A tuple is an immutable sequence of objects.

• Because tuples are immutable, Python can implement them more efficiently than the corre-

sponding lists and need only support a subset of the behaviors afforded to lists.

• The literal form for tuples uses enclosing parentheses, with commas separating individual

elements:

person = (‘ Firstname ’ , ‘ Lastname ’ , ‘ Pro f e s s i on ’)

• Tuples support all the nonmutative behaviors of lists that wee summarized in Figure 2.2

with the exception of count and index.

• Construct a few tuples and implement every tuple method from Figure 2.2

• Numeric Types: int, long, and float:

• There are four different primitive types for storing numbers: int, long, float, and complex.

• There is a maximum magnitude for a value stored as an int, although this limit depends

upon the underlying computer architecture.

• For integer values that have maginitude beyond that limit, Python supports a long class

that can perfectly represent integers with arbitrarily large magnitudes (although with a

more complicated internal encoding).

• Python automatically converts from the use of into long when necessary.

• Floating-point representation is used for real numbers which are integers. In Python, these

are stored using a class named float. Note, the literal 3.0 belongs to the float class even

though it has not fractional part

• We will not work much with complex numbers.

• Here are selected operators supported by Python’s numeric types:

• Note, // represents integer division and % represents the modulo operator.

27

• These numeric types are immutable. A typical command age = age + 1 does not alter the

value of the original object; it creates a new object.

• Type Conversions:

• Converting information from one data type to another is called casting.

• Try the following conversion commands appropriately:

• int, float, round, str

• A second notion of conversion between text and numbers involves the low-level encoding of

text characters.

• Each character is stored in memory as an integer, using ASCII (American Standard Code

for Information Interchange which is a 7-bit character set for 128 characters) or Unicode (a

much larger character set – www.unicode.org).

• The function ord(character) returns the integer code for the chosen character.

• The function chr(integer) converts the code value to the corresponding character.

• Remember ‘Z’ < ‘a’. Find their respective ordinals.

• We can convert a string to a list of characters using list(string).

• Note, the parameter in the list() constructor can be another list or a tuple.

• Likewise, the tuple() constructor can be used to create a tuple based on the contents of an

existing tuple, list or string.

• Try these various conversions using concrete examples.

4. Expressions, Calling Functions (sections 2.6, 2.7, 2.8)

• We have seen member functions of a class:

ob j e c t . method (parameters)

#For example :

c i r c l e . draw (window)

math . s q r t (25)

• We have also seen pure functions; that is, functions which are not formally methods from

a class.

f unc t i on (parameters)

#For example :

chr (37)

ord (” ”)

i n t (3 . 1 4)

• Here is a table of some commonly used built-in function. Try every one of these with

various parameters (think numeric, string, lists, tuples types).

28

29

• Python Modules:

• There are hundreds of useful tools other than built-in functions which have been written by

developers of Python.

• These tools are placed into libraries, called modules, that can be individually loaded as

needed.

• In order to use the tools from a particular library, we need to import that library.

import l i b r a r y

l i b r a r y . f unc t i on (parameters)

#For example :

import math

math . s q r t (25)

import random

random . random ()

• You may also selectively import a few functions or all the functions from a library:

from l i b r a r y import funct ion1 , func t i on2

func t i on1 (parameters)

func t i on2 (parameters)

from l i b r a r y 2 import ∗ #Import a l l (except i n t e r n a l) f unc t i on s

#For example :

from math import ∗
s q r t (25)

p i

from random import randrange

randrange (2 ,25)

• We can obtain information regarding a library with the command help(library) after import-

ing the said library. Here are some commonly used libraries.

30

• Here are some concrete examples:

import math

math . s q r t (25)

math . p i

math . s i n (math . p i /2)

math . tan (3∗math . p i /4)

math . f a c t o r i a l (6)

math . f l o o r (5 . 2 39)

math . c e i l (5 . 2 39)

#####################

import random

random . random ()

random . randrange (4 , 20 , 3)

random . uniform (4 ,20)

#########################

import time

time . time () #Number o f seconds s i n c e 12:00 am, Jan1 , 1970 (epoch)

time . l o c a l t ime (time . time ()) #S t r u c t u r e d l o c a l time

print (’ He l lo ’)

time . s l e e p (5)

print (’Good morning ’)

##########################

import datet ime

datet ime . datet ime . now() # microseconds ?

datet ime . date . today ()

############################

import re

xx=’ Hel lo , how are you? ’

yy=’May I have some water ? ’

zz=’ g i bb e r i s h . blah ’

re . f i n d a l l (r ’ ˆ\w+’ , xx)

re . f i n d a l l (r ’ ˆ\w+’ , yy)

re . f i n d a l l (r ’ ˆ\w+’ , zz)

####################################

import os

os . getcwd ()

os . chd i r (”c :\ Users \(username)\Desktop”)

os . path . expanduser (’ ˜/Desktop/ ’)

31

• Expressions:

• We have seen expressions such as 14 + 5 + 3, or 14 + 15− 2, or 14− 15 + 2.

• You need to know order of operations or precedence to evaluate expressions.

• Note, addition and subtraction have equal precedence, and are left-associative. Likewise,

multiplication and division have equal precedence, and are left-associative. On the other

hand, exponentiation is right-associative. That is, 4 ∗ ∗3 ∗ ∗2 = 43
2
= 4 ∗ ∗(3 ∗ ∗2) = 4(3

2).

• We portray the evaluation order graphically using a hierarchical evaluation tree. For

example:

• Note that the assignment operator (=) has the lowest precedence. This is why

fullName = firstName + ‘ ’ + lastName is equivalent to

fullName = ((firstName + ‘ ’) + lastName).

• Boolean Expressions and the bool Class:

• The literals True and False are instances of the class bool.

• The term bool is named after the mathematician George Boole who pioneered the study of

many logical properties.

• There are three core logical operators: not (this is unary), (and) (binary), or (binary).

32

• Here is the truth table for these boolean operators:

• Note that the or is an inclusive or.

• The exclusive or relies on x! = y (that is, both x and y cannot simultaneously be True).

• Some compound boolean expressions can be chained: For example,

3 < x and x < 8 is equivalent to 3 < x < 8.

• Calling Functions from Within Expressions:

• Here is an example: len(groceries) > 15 and ‘milk’ in groceries

• Here is an evaluation tree for this expression:

• Note that when multiple functions calls are used in the same expression, they are typically

evaluated from left to right. For example, consider the following and give their output:

song = ‘With a Moo Moo Here And a Moo Moo There ’

song . s p l i t () [5]

song . lower () . count (‘ t ’)

myList = song . lower () . s p l i t ()

myList . i n s e r t (myList . index (‘moo ’) +2, ‘ quack ’)

myList

5. Lists and for loops (sections 4.1, 4.5)

• The order in which commands are executed by a program is its flow of control.

• By default, statements are executed in the order in which they are given.

• A different execution order can be specified using control structures.

• The for loop is one such control structure.

• The repetition of a series of steps for each item of a sequence is called iteration.

• A for loop always begins with the syntax for identifier in sequence: followed by a block of

code we call the body of the loop.

• Note, in the above example, person is the loop variable. The loop variable name is expected

to be meaningful.

• The sequence in the above example is guests. It can be a sequence of elements, usually a

list, string, or tuple.

• The first line ends with a colon (:) to designate the forthcoming body.

• The body is indented.

• Here is a concrete example and its diagram:

gue s t s = [‘ Carol ’ , ‘ Al ice ’ , ‘Bob ’]

f o r person in gue s t s :

p r i n t (‘ He l lo my name i s ’ , person)

33

34

• A for loop can technically iterate upon an empty sequence, the body of the loop is never

executed; there are no elements.

• Here is another example:

ba lance = 0

t r a n s a c t i o n s = [200 , −50 ,100]

f o r entry in t r a n s a c t i o n s :

ba lance = balance + entry . #Can a l s o be written , ba lance += entry

p r i n t (‘ Your balance i s ’ , ba lance) #Not indented

• Since the print statement above is not indented, it is not part of the body of the for loop.

In other words, the print statement is implemented after the for loop is completed.

• Note that we can use the for loop in an interactive session with the interpreter also.

• To get out of the for loop, we need to hit ‘Enter’ twice.

• What is the output of the following code?

f o r count in range (10 ,0 , −1) :

p r i n t (count)

p r i n t (‘ B l a s t o f f ! ’)

• What is the output of the following code? (This technique is index-based loop)

g r o c e r i e s = [‘ milk ’ , ‘ cheese ’ , ‘ bread ’ , ‘ c e r ea l ’]

f o r p o s i t i o n in range (l en (g r o c e r i e s)) :

l a b e l = s t r (1+ p o s i t i o n)+ ‘ . ’

p r i n t (l a b e l+g r o c e r i e s [p o s i t i o n])

35

• What is the output of the following code?

gue s t s = [‘ Carol ’ , ‘ Al ice ’ , ‘Bob ’]

f o r person in gue s t s :

person = person . lower ()

gue s t s

• Now compare with the output of the following code:

gue s t s = [‘ Carol ’ , ‘ Al ice ’ , ‘Bob ’]

f o r i in range (l en (gue s t s)) :

gue s t s [i] = gues t s [i] . lower ()

gue s t s

• Nested Loops:

• The technique of using one control structure within the body of another is called nesting.

For example,

f o r chapter in (‘ 1 ’ , ‘ 2 ’) : #Outer Loop

pr in t (‘ Chapter ’+ chapter)

f o r s e c t i o n in (‘ a ’ , ‘ b ’ , ‘ c ’) : #Inner Loop

pr in t (‘ Sec t i on ”+chapter+s e c t i o n)

p r i n t (‘ Appendix ’)

• List Comprehension:

• Consider the following piece of a code:

a u x i l i a r y = []

f o r person in gue s t s :

a u x i l i a r y . append (person . lower ())

aux ia l a ry

• This is an accumulator approach. We start with an empty list, and then populate it using

a for loop.

• Python supports a simpler syntax for such tasks known as list comprehension.

a u x i l i a r y = []

a u x i l i a r y = [person . lower () f o r person in gue s t s]

aux ia l a ry

• In general, list comprehension follows the syntax

r e s u l t = [exp r e s s i on f o r i d e n t i f i e r in sequence]

• In fact, there is a more general form of list comprehension using condition

r e s u l t = [exp r e s s i on f o r i d e n t i f i e r in sequence i f c ond i t i on]

• For example,

d e p o s i t s = [entry f o r entry in t r a n s a c t i o n s i f entry > 0]

6. While loops, defining functions (sections 5.1, 5.2, 5.4)

• The while loop is a control structure which is used when a programmer needs greater

flexibility than is offered by the for loop.

• The for loop requires a pre-existing sequence of objects. The while loop is used when such

a sequence is not available in advance.

• The general syntax for the while loop is

whi l e cond i t i on :

body

• For example, in an interactive game, we could have the following code

response = input (” Sha l l we play a game? ”)

whi l e re sponse . lower () in (‘ y ’ , ‘ yes ’) :

. . . code f o r p lay ing a game

response = input (”Would you l i k e to play again ? ”)

• Here is the flow chart for the while loop:

• Here is an algorithm to find the GCD of two positive integers.

u = i n t (input (” Enter f i r s t p o s i t i v e i n t e g e r : ”))

v = i n t (input (” Enter second p o s i t i v e i n t e g e r : ”))

guess = min (u , v)

whi l e (u % guess >0) or (v % guess >0):

guess −= 1 .

p r i n t (”The gcd i s ” , guess)

36

37

• The following is the more efficient Euclid’s algorithm:

u = i n t (input (” Enter f i r s t p o s i t i v e i n t e g e r : ”))

v = i n t (input (” Enter second p o s i t i v e i n t e g e r : ”))

whi l e (v != 0) :

u , v = v , u % r

pr in t (”The gcd i s ” , u)

• In the following code, a non-empty string is interpreted as the boolean value True:

gue s t s = []

name = input (” Enter a name (blank to end) : ”)

whi l e name :

gue s t s . append (name)

name = input (” Enter a name (blank to end) : ”)

p r i n t (f ”You entered { l en (gue s t s)} gues t s . ”)

• The loop above is a post-test loop. It is also a loop and a half. We can avoid repeating the

command for reading a name with the following pre-test loop (that is, the body of the loop

is forced to be executed at least once):

gue s t s = []

name = ’ fake ’

whi l e name :

name = input (” Enter a name (blank to end) : ”)

i f name :

gue s t s . append (name)

p r i n t (f ”You entered { l en (gue s t s)} gues t s . ”)

• In the loop above, while we have avoided repeating the command for reading a name, we

have repeated the check whether the name is blank. The following code removes the extra

blank entry at the end:

gue s t s = []

name = ’ fake ’

whi l e name :

name = input (” Enter a name (blank to end) : ”)

gue s t s . append (name)

gue s t s . pop ()

p r i n t (f ”You entered { l en (gue s t s)} gues t s . ”)

38

• Here is another example:

number = 0

whi le not (1 <= number <= 1 0) :

number = i n t (input (” Enter a number from 1 to 10 : ”))

i f not (1 <= number <= 1 0) :

p r i n t (” Your number must be from 1 to 10 . ”)

• Infinite Loops:

• Here is an example of an infinite loop:

whi l e True :

p r i n t (” He l lo ”)

• Here are pieces of code one of which involves an infinite loop:

i=0

whi le i < 11 :

p r i n t (i , i ∗∗2)

#Here i s the second one

i=0

whi le i < 11 :

p r i n t (i , i ∗∗2)

i += 1

• To manually force the interpreter to stop the execution of an infinite loop is typically done

by entering the control-c key stroke.

• Functions:

• Functions can serve as the ultimate control structure.

• A function allows a series of complicated instructions to be encapsulated and then subse-

quently used as a single high-level operation.

• For example, suppose we want to design and implement a function that locates the maximum-

length string from a sequence of strings. Say, we want to implement this function in the

following fashion:

i n g r e d i e n t s = [‘ carbonated water ’ , ‘ caramel co lo r ’ ,

‘ phosphor ic acid ’ , ‘ sodium sacchar in ’ , ‘ potassium benzoate ’ ,

‘ na tura l f l a v o r s ’ , ‘ c i t r i c acid ’ , ‘ c a f f e i n e ’ ,

‘ potassium c i t r a t e ’ , ‘ aspartame ’ , ‘ d imethy lpo lys i l oxane ’]

concern = maxLength (i n g r e d i e n t s) #c a l l i n g our func t i on

p r i n t (concern)

39

• Note that maxLength() is not a built-in pure Python function, nor is a list method. So, we

define this function:

de f maxLength (s t r i ngSeq) :

longSoFar = ’ ’ #the l o n g e s t s t r i n g so f a r i s the empty s t r i n g

f o r entry in s t r i ngSeq :

i f l en (entry) > l en (longSoFar) :

longSoFar = entry

re turn longSoFar

• Note the syntax for defining functions. We start with def functionName(parameters).

In our case, there is only one parameter, a list or tuple of strings. Notice also that this

function has to return something (in our case, the entry with the maximum length). If the

definition of a function does not have a return statement, then it returns an object None.

• Parameters: Note, in our case, stringSeq is the formal parameter while ingredients is

the actual parameter. Sometimes a function does not take any parameters. In that case

we use empty parentheses () in the definition and calling of the said function.

• Each time a function is called, the system assigns the identifier we chose as a formal param-

eter to the actual parameter indicated by the caller. The code in the body of the function

uses the formal parameter to identify the underlying piece of information.

• Body: The body of the function is indented after the def statement. In our example, the

identifier longSoFar has local scope since it cannot be directly accessed by any block of

code other than the body of the function; it is created solely for our use in processing the

40

current function call. In other words, if we have another longSoFar outside the definition of

the function maxLength, then the two variables do not interfere.

• Return value: The function body ends with return longSoFar. Although the local

identifier longSoFar will cease to exist as the function ends, the underlying object will be

available to the caller.

• Sometimes the return command is executed elsewhere within the body of the function (for

example, within a conditional). In this case, the execution of the function immediately ends

with any specified value passed back to the caller. Sometimes we may use a return statement

without any subsequent value. In this case, the execution of the function without returning

any formal value to the caller, and the special value None object is returned.

• Flow of Control: Calling a function is a form of a control statement. Parameters are

sent to the function and the moment the caller invokes the function, control is passed to

the body of the function. Some function calls may take more time to complete than others.

Sometimes, a function may get stuck in an infinite loop. The control returns to the caller

after the function is completed.

• More generally, we can nest function calls just as we nest other control structures. For

instance, consider the following diagram of the flow of control:

• Optional Parameters: Sometimes we can define functions with optional parameters. In

this case, a caller can choose to send a value for such a parameter, but otherwise a default

value is substituted. For example,

de f countdown (s t a r t =10, end =1):

f o r count in range (s ta r t , end−1, −1):

p r i n t (count)

• The function countdown can be called in the following ways

countdown (30 , 5) #c l e a r l y s t a t i n g the parameters ;

countdown () #here the d e f a u l t parameters o f 10 ,1 are used ;

countdown (50) #here , the f i r s t parameter i s 50

whi l e the second parameter i s the d e f a u l t o f 1 .

• It is also possible to define functions for which some parameters have default values and

others do not. Build various examples.

41

• Case Study: Computing the Square Root

• While the math library has a sqrt() function, we will try Newton’s method to define our

own sqrt() function. We go through several improvements in the process.

• We start with a guess square-root.

Note, guess * guess = number is equivalent to guess = number/guess.

• Here is a first attempt:

de f sqrtA (number) :

guess = 1 .0

whi l e guess != number/ guess :

guess = (guess + number/ guess) /2 . 0

#improving our guess by us ing average

re turn guess

• This code will get into an infinite loop because we can keep improving our guess, since most

square-roots are irrational.

• Here is an improvement using fixed number of iterations:

de f sqrtB (number) :

guess = 1 .0

f o r t r i a l in range (1 0 0) :

#we are going to improve our guess 100 t imes

guess = (guess + number/ guess) /2 . 0

#improving our guess by us ing average

re turn guess

• While this approach works better, sometimes an exact square root is found within a few

iterations, then the program continues for the rest of the iterations unnecessarily.

• So here is another approach where the iterations continue until the gap is small (as in an

allowableError):

de f sqrtC (number , a l l owab l eEr ro r = 0 . 0 0 0 0 0 1) :

guess = 1 .0

whi l e abs (guess − number/ guess) > a l l owab l eEr ro r :

guess = (guess + number/ guess) /2 . 0

#improving our guess by us ing average

re turn guess

• This function can get into an infinite loop if the caller passed 0 as an allowableError. Even

in the default value, we can end up in an infinite loop.

42

• Let us try one more option:

de f sqrtD (number) :

prevGuess = 0 .0

guess = min (1 . 0 , number)

whi l e prevGuess < guess :

prevGuess = guess

avg = (guess + number/ guess) /2 . 0

guess = min (avg , number/avg)

re turn guess

7. Conditional Statements (section 4.4)

• Conditional statement, or more commonly, an if statement is another control structure.

• The syntax for an if statement is:

i f condt ion :

body

• The flow chart for an if statement is given:

• For example:

d inner = input (”What would you l i k e f o r d inner ?”)

i f d inner == ’ pizza ’ :

p r i n t (” Great ! ”)

p r i n t (” I l ove pepperoni and black o l i v e s . ”)

• The condition: Note, the condition can be a boolean expression. For example:

i f l en (g r o c e r i e s)>15 or ’ milk ’ in g r o c e r i e s :

p r i n t (”Go to the groce ry s t o r e ”)

#Here i s another example −− s e e the d i f f e r e n c e ?

i f l en (g r o c e r i e s)>15 and ’ milk ’ in g r o c e r i e s :

p r i n t (”Go to the groce ry s t o r e ”)

• The body: The body of the loop is indented after the if statement. The body could contain

another conditional statement, resulting in nested if-statements. For example,

i f par tyStar ted :

i f person in gue s t s :

p r i n t (”Welcome”)

43

44

• The above example is equivalent to the following compound conditional:

i f par tyStar ted and person in gue s t s :

p r i n t (”Welcome”)

• Python uses a technique known as short circuiting, where a partial evaluation of a boolean

expression suffices as soon as the outcome can be properly determined.

x and y: if x is False, the result is False. If x is True, then the result of (x and y) is y.

x or y: If x is True, the result is True. If x is False, the result of (x or y) is y.

• Here is an example of nested control structures:

ba lance = 0

f o r entry in t r a n s a c t i o n s :

ba lance += entry

i f ba lance < 0 :

p r i n t (” Overdraft warning ”)

• if-else Syntax: In the simplest form,

i f c ond i t i on :

body1 #Notice the indenta t i on

e l s e : #No indentat ion , a l i gned with i f

body2 #Indentat ion

• Here is the flow-chart:

• Here is an example:

depos i tTota l = 0

withdrawalTotal = 0

f o r entry in t r a n s a c t i o n s :

i f entry >0:

depos i tTota l += entry

e l s e :

withdrawalTotal += entry

45

• if-elif-else Syntax: The syntax is as follows:

i f cond i t i on1 :

body1 #Notice the indenta t i on

e l i f cond i t i on2 : #No indentat ion , a l i gned with i f

body2 #Indentat ion

e l i f cond i t i on3 : #No indentat ion , a l i gned with i f

body3 #Indentat ion

.

.

.

e l s e : #No indentat ion , a l i gned with i f

de fau l t−body #Indentat ion

• Here is a concrete example:

daynumber = i n t (input (” Enter an i n t e g e r between 1 and 7 (i n c l u s i v e) : ”))

i f daynumber == 1 :

day = ”Monday”

e l i f daynumber == 2 :

day = ”Tuesday”

e l i f daynumber == 3 :

day = ”Wednesday”

e l i f daynumber == 4 :

day = ”Thursday”

e l i f daynumber == 5 :

day = ” Friday ”

e l i f daynumber == 6 :

day = ” Saturday ”

e l s e :

day = ”Sunday”

8. Designing and implementing classes – a Fraction class (sections 6.4)

• It is best to learn how to design classes by examples. Here is an example:

c l a s s EmployeeFirstDraft :

de f i n f o (s e l f) :

p r i n t (”Name o f the employee i s unknown”)

p r i n t (”The annual income o f the employee i s unknown”)

p r i n t (”The employee j o in ed our company on unknown . ”)

• Run this module, and then try

ted = EmployeeFirstDraft ()

ted . i n f o ()

h o l l y = EmployeeFirstDraft ()

h o l l y . i n f o ()

• Here is a better class.

c l a s s Employee :

de f i n i t (s e l f , f irstName , middleName , lastName ,

dateOfJoining , annualIncome) :

s e l f . f i r s tName = firstName

s e l f . middleName = middleName

s e l f . lastName = lastName

s e l f . dateOfJo in ing = dateOfJo in ing

s e l f . annualIncome = annualIncome

de f getName (s e l f) :

name = s e l f . f i r s tName +’ ’+ s e l f . middleName+’ ’+ s e l f . lastName

return name

de f getDateOfJoin ing (s e l f) :

r e turn s e l f . dateOfJo in ing

de f getAnnualIncome (s e l f) :

r e turn s e l f . annualIncome

de f newAnnualIncome (s e l f) :

new = (1 . 0 5)∗ s e l f . annualIncome

return new

de f i n f o (s e l f) :

p r i n t (”Name o f t h i s employee i s ” , s e l f . getName () + ’ . ’)
46

47

pr i n t (” Last year h i s / her annual income was $ ” , s t r (s e l f . getAnnualIncome ()) + ’ . ’)

p r i n t (” This year h i s / her annual income i s $ ” , s t r (s e l f . newAnnualIncome ()) + ’ . ’)

p r i n t (”The employee j o in ed our company on ” , s t r (s e l f . getDateOfJoin ing ()) + ’ . ’)

• Now try the following:

ted = Employee (”Ted” , ”Matthew ” , ”Bush ” , ”1 January 2019” , 45000)

ted . i n f o ()

• The keyword class declares the definition of a new class. The subsequent identifier Employee is

our choice for naming our class (or EmployeeFirstDraft in the first case). The colon marks the

beginning of the block of code that serves as the body of the class definition.

• The first method is named init . Informally, this method is referred to as the constructor.. Its

primary purpose is to establish initial values for the attributes of the newly created object. The

implicit parameter self serves internally to identify the parameter instance being constructor.

• Other methods are defined following the same syntax as definitions of functions. Some methods

are accessors – these access the state information of the instance. Some methods are mutators–

these change the state information of the instance.

• A Fraction Class:. We develop an immutable Fraction class. Our internal representation of

a fraction consists of two numbers, a numerator and a denominator. We wish to ensure that all

fractions are reduced to lowest terms and stored with a nonnegative denominator. A fraction with

denominator of zero is viewed arithmetically as an undefined value. We will solely use special

methods.

• We would like to create instances of this class such as Fraction(16,9), Fraction(3), Fraction() to

represent
16

9
,
3

1
and 0 respectively.

Program : Fract ion . py

from gcd import gcd

class Fract ion :

def i n i t (s e l f , numerator=0, denominator=1) :

i f denominator == 0 : # f r a c t i o n i s undef ined

s e l f . numer = 0

s e l f . denom = 0

else :

f a c t o r = gcd (abs (numerator) , abs (denominator))

i f denominator < 0 : # want to d i v i d e through by negated

f a c t o r

f a c t o r = −f a c t o r

s e l f . numer = numerator // f a c t o r

s e l f . denom = denominator // f a c t o r

######## Ari thmet ic Methods ########

def a d d (s e l f , o ther) :

48

return Fract ion (s e l f . numer ∗ other . denom + s e l f . denom ∗ other .

numer ,

s e l f . denom ∗ other . denom)

def s u b (s e l f , o ther) :

return Fract ion (s e l f . numer ∗ other . denom − s e l f . denom ∗ other .

numer ,

s e l f . denom ∗ other . denom)

def mul (s e l f , o ther) :

return Fract ion (s e l f . numer ∗ other . numer , s e l f . denom ∗ other .

denom)

def t r u e d i v (s e l f , o ther) :

return Fract ion (s e l f . numer ∗ other . denom , s e l f . denom ∗ other .

numer)

######## Comparison Methods ########

def l t (s e l f , o ther) :

return s e l f . numer ∗ other . denom < s e l f . denom ∗ other . numer

def e q (s e l f , o ther) :

return s e l f . numer == other . numer and s e l f . denom == other . denom

######## Type Conversion Methods ########

def f l o a t (s e l f) :

return f loat (s e l f . numer) / s e l f . denom

def i n t (s e l f) :

return int (f loat (s e l f)) # conver t to f l o a t , then t runca t e

def s t r (s e l f) :

i f s e l f . denom == 0 :

return ’ Undefined ’

e l i f s e l f . denom == 1 :

return str (s e l f . numer)

else :

return str (s e l f . numer) + ’ / ’ + str (s e l f . denom)

9. Error checking and exceptions (section 5.5)

• We have encountered various errors in the past. Example, NameError, TypeError, ValueEr-

ror.

• Each of these types of standard errors is a subclass of a general Exception class.

• Exceptions are used to report scenarios that are out of the ordinary. The result of an

exception is to immediately stop the current executing code.

• For instance, if your code involves the following:

number = i n t (input (” Enter a number from 1 to 10 : ”))

• You would like to make certain that the user inputs a number from 1 to 10.

number = 0

whi le not (1 <= number <= 1 0) :

t ry :

number = i n t (input (” Enter a number from 1 to 10 : ”))

i f not (1 <= number <= 1 0) :

p r i n t (” Your number must be from 1 to 10 . ”)

except ValueError :

p r i n t (” That i s not a v a l i d i n t e g e r . ”)

• This approach works well, but does not know what to do with other kind of errors.

number = 0

whi le not (1 <= number <= 1 0) :

t ry :

number = i n t (input (” Enter a number from 1 to 10 : ”))

i f not (1 <= number <= 1 0) :

p r i n t (” Your number must be from 1 to 10 . ”)

except ValueError :

p r i n t (” That i s not a v a l i d i n t e g e r . ”)

except EOFError :

p r i n t (”What are you doing ?”)

except :

p r i n t (” Looks l i k e you do not know what an i n t e g e r i s . ”)

p r i n t (” That i s okay . We w i l l choose . ”)

number = 7

• Raising an Exception

• We can also raise exceptions from within our own code. For example:

de f sqrtE (number) :

i f number <0:

r a i s e ValueError (” s q r t (number) : number i s negat ive ”)

prevGuess = 0 .0
49

50

guess = min (1 . 0 , number)

whi l e prevGuess < guess :

prevGuess = guess

avg = (guess + number/ guess) / 2 .0

guess = min (avg , number/avg)

re turn guess

• When raising an exception, we technically create an instance of the appropriate error class,

providing a descriptive error message as a parameter to its constructor.

• Type Checking

• A ValueError happens when a function or method obtains the appropriate type of argument

but yet, an inappropriate one. Like in our example, the square-root of a negative number.

A TypeError occurs when a function or method obtains an argument of the inappropriate

type.

• We want to be able to check that the data sent matches the expected type.

• Our preferred tool for type checking is a built-in function, isinstance. The syntax of isin-

stance() is

i s i n s t a n c e (object , c l a s s i n f o)

• Here, classinfo could be a class, type, or tuple of classes and types.

• For instance, isinstance(number, float) checks whether the number is a floating-point value.

• We now improve our square-root function as follows:

de f sqrtE (number) :

i f not (i s i n s t a n c e (number , (int , f l o a t))) :

r a i s e TypeError (” s q r t (number) : number must be numeric ”)

i f number <0:

r a i s e ValueError (” s q r t (number) : number i s negat ive ”)

prevGuess = 0 .0

guess = min (1 . 0 , number)

whi l e prevGuess < guess :

prevGuess = guess

avg = (guess + number/ guess) / 2 .0

guess = min (avg , number/avg)

re turn guess

51

• Here is another function. What do you think it does?

10. Design, Documentation, Unit Testing (sections 7.2, 7.4, 7.5, 7.6, 7.7)

• Top-Down Design and Bottom-Up Implementation:

• Before we write any portion of a large program we should consider its overall design.

• We need to identify potential classes and the way in which objects from those classes will

interact.

• A starting point is to envision the use of our final product and design a top-level class and

its interface.

• From there we expand our design to include classes that the top-level class will need in order

to perform its tasks.

• We repeat this process until we have designed a collection of individual components that

can be written and tested independently.

• This approach is known as top-down design.

• Once the design is fixed, implementation should start at the lowest level and work up to the

top level.

• This technique is known as bottom-up implementation.

• Every component must be tested thoroughly before moving on to the next higher level.

• The existence of smaller independent pieces is called modularity. One advantage of this

design is that the pieces can be implemented and tested in parallel by a team. Furthermore,

many of the components may have more general value, allowing for code reuse across

multiple portions of the program or in other projects.

• Naming Conventions:

• Recall, an identifier cannot begin with a numeral, cannot have any spaces, and cannot be

among a short ist of reserved keywords. Identifiers are case sensitive.

• A name should be descriptive, clearly suggesting an underlying purpose so as to improve

the overall readability of the code. A thoughtful choice of a name can go along way in

establishing correct intuition.

• Classes: A class name should be a singular noun, and begin with a capital letter. When the

class name involves two or more English words, we concatenate those words while capitalizing

the first letter of each word (e.g. CannonBall).

• Functions: The name of a function, whether stand-alone or a method of a class, should

be a verb and begin with a lowercase letter, but each additional word is capitalized (eg.

jumPrevChannel, getYCoord).

52

53

• Data: A data name should be a noun, begin with a lowercase letter, but each additional

word is capitalized. Data name may be singular or plural depending on its usage. Choose

names that clearly indicate what type of data is being stored and how it will be used (eg.

guestList, idNumber).

• Parameters: Names of parameters follow the same convention as for data.

• The advantage of naming conventions: Following conventions helps us to tell exactly

what a name represents even with limited context.

• Formal Documentation: Python Docstrings

• Documentation informs another programmer how to properly use your classes and func-

tions, and serves as a formal specification of promised behavior that must be internally

implemented. The expected outward behavior of a class or a function should be well defined

and documented before the actual implementation is written.

• The symbol # is used for directly embedding comments within source code. This style of

comment is ignored by the interpreter yet visible to a programmer, making it very valuable

for someone who reads a piece of code.

• To access documentation without going into the code, Python supports another style of

documentation using well-placed strings known as docstrings.

• These strings are visible within the source code and they are also used to generate documen-

tation seen in the Python interpreter through the use of the help command and to generate

documentation on webpages using a corresponding utility pydoc.

• A docstring is technically a string literal that occurs as the very first element within the

body of a class or function.

• Triple quote delimiters (” ” ”) are used since these allow for multiline strings.

• A docstring should begin with a brief one line description. If further explanation is war-

ranted, such as the purpose or type of parameters and return value, that information should

be provided after a subsequent blank line within the docstring.

• Encapsulation of Implementation Details

• The principle of treating internal implementation details of a software component as private

is known as encapsulation.

• The primary advantage of encapsulation is that it limits the interdependence between soft-

ware components.

• Having a clear designation of the public and private aspects of the component benefits both

the author and the client using the program. For the author, the encapsulation of private

details provides greater flexibility in the development and maintenance of the software. For

the client, the identification of the public portion draws focus to only that which must be

understood to properly use the component.

• High-Level Design: The use of encapsulation begins with the creation of the high-level

design for a software project. ıThe design of the various public interfaces depends upon the

degree of information sharing that is necessary.

• Underscored Names in Python: Python supports the notion of encapsulation through

naming conventions.

54

• If the identifier given to a class, or to a method or attribute of a class, begins with an

alphabetic character that element is presumed to be of public interest.

• To designate something as private, we choose an identifier that begins with a single under-

score character.

• When methods of a class are named with a leading underscore, they are not displayed in

documentation generated by the help command or the pydoc utility.

• When the wildcard form of an import is performed (eg. from cs1graphics import *), only

the public elements of the module are loaded.

• But note, if a user is aware of an underscored name, then they can be directly accessed (eg.

point. xcoord = 5).

• Note that the single underscore naming convention is unrelated to the double underscore

naming used for special methods such as init . Also, local variables within a function

body are not typically underscored, as they are already private due to their local scope.

• Data Members: In order to protect the integrity of an object’s state, we generally en-

capsulate all attributes of a class as private, preferring public access through designated

accessors and mutators.

• Private Methods: We can designate certain methods as private by using underscore as

the first character of their names. While the public methods are ones that we expect to

be called by others, private methods are used for our own convenience when implementing

a class; they should only be called from within the remainder of the class. Often these

functions are used to perform some common task for the rest of the class to improve the

overall organization.

• Modules and Unit Testing:

• The source code for a large project is typically split into several files. This helps improve

the organization, supports reuse of code, and allows for different developers to edit different

components with less interference.

• If one class relies upon definitions from a separate file, the latter elements must be imported

into the former before they can be used.

• Another important principle of good software development is to test each individual compo-

nent as it is written. Testing a class individually, instead of as part of the larger program,

is called unit testing. This is the essence of bottom-up implementation.

• With unit testing earlier classes are rendered reasonably error free before being used.

• Python provides a convenient manner for embedding unit tests inside the same file as the

class implementation. The basic format is:

c l a s s ClassName :

#implementation here

i f name = ’ main ’ :

#uni t t e s t here

• The conditional allows us to execute commands as part of an isolated unit test, yet to have

those commands ignored when the file is being incorporated into the larger software project.

55

• When a Python program is executed, the flow of control begins with an indicated module.

That top-level module may import other modules along the way.

• Within an individual module, the special variable name serves to identify the context

in which that module is currently being loaded. If the module is the one upon which

the interpreter was initially invoked, this variable will be automatically set to the string

’ main ’. Alternatively, if the module is being imported from elsewhere, then name will

be set to this module’s own name.

11. Input and Output; Files (sections 8.1, 8.2, 8.3, 8.4, 8.5)

• Standard Input and Output

• The simplest form for receiving input from a user is through the use of input function:

i d e n t i f i e r = input (” Question : ”)

#Or ,

i d e n t i f i e r = input () #Here , no ques t i on i s d i sp layed .

• The system waits for the user to type. Once the keys are typed, the user presses the enter

key. The input function returns the string of entered characters, up to but not including the

final newline. Here are a few examples:

c o l o r = input (”What i s your f a v o r i t e c o l o r ?”)

#Or

c o l o r = input (”What i s your f a v o r i t e c o l o r ? [b lue] ”)

i f c o l o r == ”” :

c o l o r = ” blue ”

#Or

c o l o r = input (”What i s your f a v o r i t e c o l o r ? [b lue] ”)

i f not c o l o r : #empty s t r i n g has boolean value o f Fa l se

c o l o r = ” blue ”

• The simplest form for generating output is by using the print command. Here are some

simple examples:

p r i n t (” I l i k e ” , f a v o r i t e F r u i t , ”and the number ” , myAge)

• By default setting an explicit space is automatically inserted into the output between succes-

sive arguments separated by commas. The print command also generates one final newline

character (’ \n’)

• Formatted Strings

• Here are various ways of using string formatting. The following commands will all result

in the same output.

name = ”Myteam”

rank = 1

t o t a l = 20

pr in t (name+”: ranked ” , rank , ” o f ” , t o ta l , ” teams . ”)

p r i n t (”%s : ranked %d o f %d teams .”%(name , rank , t o t a l))

p r i n t (f ”{name} : ranked { rank} o f { t o t a l } teams . ”)

p r i n t (”{0} : ranked {1} o f {2} teams . ” . format (name , rank , t o t a l))

56

57

• In the above formatting, % d represents integer (even though the term is decimal); % s

represents string or list, tuple, % i can also be used for integer, %f for floating-point, %% to

print % symbol.

• Note % 4d causes an integer to be printed with a minimum of four characters. If the integer

is less than 4 digits long, then it is right justified by default. Check what happens with the

following (some are in fact syntactically incorrect – which ones?):

p r i n t (” Give me $%10d .”%3456)

p r i n t (” Give me $%−10d .”%3456)

p r i n t (” Give me $%010d .”%3456)

p r i n t (” Give me $%10d .”%3456789876543212)

p r i n t (” Give me $%10 f .”%3456)

p r i n t (” Give me $%10.2 f .”%3456)

p r i n t (” Give me $%10d .”%3456/1312)

p r i n t (” Give me $%10 f .”%3456/1312)

p r i n t (” Give me $%10.2 f .”%3456/1312)

p r i n t (” He l lo %s .”% ’Amy’)

p r i n t (” He l lo %10s .”% ’Amy’)

p r i n t (” He l lo %−10s .”% ’Amy’)

p r i n t (” Give me $ {0} . ” . format (3456))

p r i n t (” Give me $ { 0 : 1 0 } . ” . format (3456))

p r i n t (” Give me $ {0: >10} .” . format (3456))

p r i n t (” Give me $ {0: <10} .” . format (3456))

p r i n t (” Give me $ {0 : ˆ 1 0} . ” . format (3456))

p r i n t (” Give me $ { 0 : 1 0 . 2 } . ” . format (3456))

p r i n t (” Give me $ { 0 : 1 0 . 2 } . ” . format (3456 .45678))

p r i n t (” Give me $ {0 : 1 0 . 2 f } . ” . format (3456 .45678))

p r i n t (” Give me $ {0 : 0 . 2 f } . ” . format (3456 .45678))

p r i n t (” Give me $ {0 : 10 . 20 f } . ” . format (3456 .45678))

• Working with files

• Python supports a built-in class named open to manipulate files on the computer. The con-

structor for Python’s open requires a string parameter, identifying the underlying filename

on the computer system.

my f i l e = open (” f i l ename . ex t ens i on ”)

• By default, a newly instantiated file object provides read-only access to an existing file.

• If no file exists with the specified name or if such a file is unreadable, the call to the

constructor results in an IOError.

58

• Here are several modes of opening files.

my f i l e = open (” f i l ename . ex t ens i on ” , ” r ”) #Read mode

myf i l e = open (” f i l ename . ex t ens i on ” , ”w”) #(Over) Write mode

myf i l e = open (” f i l ename . ex t ens i on ” , ”a ”) #Append mode

• Here are some methods of Python’s file class. Construct a file, and play with every com-

mand you see in this table.

• Note, the flush() method saves an open file, while the close() method saves and closes

the file.

• The write() method is slightly different from the print(string, file = filename) approach.

While print() command automatically converts nonstring arguments to strings, the write()

method does not. Also note, write() does not end in a newline.

f i l ename . wr i t e (3 . 1 4) #t h i s w i l l not work

f i l ename . wr i t e (s t r (3 . 1 4)) #t h i s w i l l work

f i l ename . wr i t e (”%5.2 f ”%3.14) #t h i s w i l l work

• Here are some codes you should try.

#Here i s the f i r s t code

f i l ename = input (”What i s the f i l ename ? ”)

source = open (f i l ename)

text = source . read ()

source . c l o s e ()

numchars = len (t ext)

numwords = len (t ext . s p l i t ())

numlines = len (t ext . s p l i t (’\n ’))

p r i n t (”Number o f c h a r a c t e r s =”, numchars)

p r i n t (”Number o f words =”, numwords)

p r i n t (”Number o f l i n e s =”, numlines)

59

#Here i s the second code

f i l ename = input (”What i s the f i l ename ? ”)

source = open (f i l ename)

numchars = numwords = numlines = 0

l i n e = source . r e a d l i n e () #Get the f i r s t l i n e .

whi l e l i n e : #Note , l i n e has a boolean value

numchars += len (l i n e)

numwords += len (l i n e . s p l i t ())

numlines += 1

l i n e = source . r e a d l i n e () #Get the next l i n e .

f i l ename . c l o s e ()

p r i n t (”Number o f c h a r a c t e r s =”, numchars)

p r i n t (”Number o f words =”, numwords)

p r i n t (”Number o f l i n e s =”, numlines)

#Here i s the th i rd code

f i l ename = input (”What i s the f i l ename ? ”)

source = open (f i l ename)

numchars = numwords = numlines = 0

f o r l i n e in source :

numchars += len (l i n e)

numwords += len (l i n e . s p l i t ())

numlines += 1

pr in t (”Number o f c h a r a c t e r s =”, numchars)

p r i n t (”Number o f words =”, numwords)

p r i n t (”Number o f l i n e s =”, numlines)

• The input() command receives input from the user, but the string does not end in ’\n’

character. On the other hand, the readline() method returns the next line of the file including

any explicit new line character. Now try what happens with the following:

animal = ’ dog\n ’

animal . r s t r i p (’\n ’)

animal

f r u i t = ’ apple ’

f r u i t . r s t r i p (’ e ’)

f l owe r = ’ rose ’

60

f l owe r . r s t r i p (’ se ’)

• Case Studies Here are some robust functions to open, write, or read files. Understand

every line of the code and implement them.

Program : F i l e U t i l i t i e s . py

#

#

”””A few u t i l i t y f u n c t i o n s f o r opening f i l e s . ”””

def openFileReadRobust () :

””” Repeated ly prompt user f o r f i l ename u n t i l s u c c e s s f u l l y

opening wi th read acces s .

Return the newly open f i l e o b j e c t .

”””

source = None

while not source : # s t i l l no s u c c e s s f u l l y

opened f i l e

f i l ename = input (’What i s the f i l ename ? ’)

try :

source = open(f i l ename)

except IOError :

print (’ Sorry . Unable to open f i l e ’ , f i l ename)

return source

def openFileWriteRobust (defaultName) :

””” Repeated ly prompt user f o r f i l ename u n t i l s u c c e s s f u l l y

opening wi th w r i t e acces s .

Return a newly open f i l e o b j e c t wi th w r i t e acces s .

defaultName a s u g g e s t e d f i l ename . This w i l l be o f f e r e d

w i t h i n the prompt and

used when the re turn key i s pres sed wi thout

s p e c i f y i n g another name .

”””

wr i t ab l e = None

while not wr i t ab l e : # s t i l l no s u c c e s s f u l l y

opened f i l e

prompt = ’What should the output be named [%s] ? ’% defaultName

f i l ename = input (prompt)

61

i f not f i l ename : # user gave b lank response

f i l ename = defaultName # t r y the s u g g e s t e d d e f a u l t

try :

w r i t ab l e = open(f i l ename , ’w ’)

except IOError :

print (’ Sorry . Unable to wr i t e to f i l e ’ , f i l ename)

return wr i t ab l e

def readWordFile () :

”””Open and read a f i l e o f words .

Return the l i s t o f s t r i n g s .

The f i l e format i s expec ted to be wi th one word s p e c i f i e d per

l i n e .

”””

print (”About to read l i s t o f words from f i l e . ”)

w o r d f i l e = openFileReadRobust ()

words = l i s t ()

for entry in w o r d f i l e :

words . append (entry . r s t r i p (’\n ’))

return words

62

• Annotating a File

• We would like to annotate files. That is, a file which looks like

• should appear as

• Here is a program:

from F i l e U t i l i t i e s import openFileReadRobust , openFileWriteRobust

p r i n t (” This program annotates a f i l e , by adding ”)

p r i n t (” Line numbers to the l e f t o f each l i n e . \n”)

source = openFileReadRobust ()

annotated = openFileWriteRobust (’ annotated . txt ’)

#proce s s the f i l e

linenum = 1

f o r l i n e in source :

annotated . wr i t e (’%4d %s ’%(linenum , l i n e))

linenum += 1

source . c l o s e ()

annotated . c l o s e ()

p r i n t (”The annotat ion i s complete . ”)

12. Graphics (sections 3.1, 3.2, 3.3)

• In this section we work with the wrapper cs1graphics.py designed by the authors of the

book. This package is for developing GUI codes. Refer to the appendix for codes using

TKinter directly.

• First, download cs1graphics.py and move it to the folder you are going to work in for

programs involving graphics.

• The Canvas

• We can create a canvas by calling the constructor as follows:

Canvas ()

• By itself, a canvas cannot be interacted with. So, it is better to start with an assignment.

paper = Canvas ()

• By default, a newly created canvas is 200 pixels wide and 200 pixels tall, has a white

background, and is titled “Graphics Canvas.” But canvas is mutable:

paper . setBackgroundColor (’ skyBlue ’)

paper . setWidth (300)

paper . s e t T i t l e (’My World ’)

• All of this can be achieved by using optional parameters:

paper = Canvas (300 , 200 , ’ blue ’ , ’My World ’)

• Here is an overview of the Canvas class:

• Note, the coordinate system has origin at the top left corner:
63

64

• Every graphical object we place upon a canvas is done so using the coordinates of a key

reference point. For example, the center of a circle.

• Here is a way to create a circle object and add it to our canvas.

sun = C i r c l e (30 , Point (250 , 50))

paper . add (sun)

sun . s e t F i l l C o l o r (’ yel low ’)

• Note, the Circle() by default is centered at (0, 0) and radius 10 pixels. So, we could have

done the following:

sun = C i r c l e ()

paper . add (sun)

sun . setRadius (30)

sun . move (250 ,50)

sun . s e t F i l l C o l o r (’ yel low ’)

• Square

• A square is another example of a FillableShape. By default, a square is 10 x 10 and centered

at (0, 0). Other sizes and central points have to be specified as follows:

facade = Square (60 , Point (140 ,130))

facade . s e t F i l l C o l o r (’ white ’)

paper . add (facade)

• We may also resize the size of a square by facade.setSize(90).

• Rectangle

• By default, a rectangle has width of 20 pixels, a height of 10 pixels, and is centered at the

origin. However, we can specify the width, the height, and the center point, in that order.

chimney = Rectangle (15 , 28 , Point (155 , 85))

chimney . s e t F i l l C o l o r (’ red ’)

paper . add (chimney)

• By default, our fillable objects have black outlines, one pixel wide. One way to make the

boundary disappear is to use the method setBorderWidth(0).

65

• Polygon

• The polygon is a fillable object which is built with a sequence of points written in order

(clockwise or counterclockwise) . By default, the polygon’s reference point is its first point.

t r e e = Polygon (Point (50 , 80) , Point (30 ,140) , Point (70 , 140))

t r e e . s e t F i l l C o l o r (’ darkGreen ’)

paper . add (t r e e)

• A polygon can also be built by adding one point at a time.

t r e e = Polygon ()

t r e e . addPoint (Point (50 , 80))

t r e e . addPoint (Point (30 , 140))

t r e e . addPoint (Point (70 , 140))

t r e e . s e t F i l l C o l o r (’ darkGreen ’)

paper . add (t r e e)

• Note, the points above have been added in a sequence with index 0, 1, 2, Thus, we may

insert a point (tree.setPoint(Point(50,70),0)) or change a point (tree.setPoint(Point(50,70),0))

or delete a point at a certain index (tree.deletePoint(i)).

• Path

• A Path connects points just like a polygon, except, a path does not connect the last point

point to the first, and a path is not fillable. A path supports setBorderColor and set-

BorderWidth methods. For instance,

sunraySW = Path (Point (225 ,75) , Point (210 , 90))

sunraySW . setBorderColor (’ yel low ’)

sunraySW . setBorderWidth (6)

paper . add (sunraySW)

• Colors

• A color is represented behind the scene by what is known as its RGB value. This is a

tuple of three numbers that represent the intensity of red, green, and blue respectively,

using a scale from 0 (no intensity) to 255 (full intensity). For example, ’skyBlue’ is RGB of

(136,206,235).

• Depths

• The relative ordering of conflicting shapes is controlled by an underlying numeric attribute

representing the depth of each drawable object. By default, all objects are assigned a depth

value of 50 and their relative ordering is is arbitrary. However, their depths can be changed

to control the image. The object with a smaller depth is drawn above the object with the

greater depth. So, we draw grass with the greatest depth.

g ra s s = Rectangle (300 ,80 , Point (150 ,160))

g ra s s . s e t F i l l C o l o r (’ green ’)

g ra s s . se tBorderColor (’ green ’)

g ra s s . setDepth (75)

66

paper . add (g ra s s)

Object-Oriented Programming in Python, © Copyright 2014 by Michael H. Goldwasser and David Letscher

102 Chapter 3 Getting Started with Graphics

1 from cs1graphics import *
2 paper = Canvas(300, 200, 'skyBlue', 'My World')

3

4 sun = Circle(30, Point(250,50))

5 sun.setFillColor('yellow')

6 paper.add(sun)

7

8 facade = Square(60, Point(140,130))

9 facade.setFillColor('white')

10 paper.add(facade)

11

12 chimney = Rectangle(15, 28, Point(155,85))

13 chimney.setFillColor('red')

14 chimney.setBorderColor('red')

15 paper.add(chimney)

16

17 tree = Polygon(Point(50,80), Point(30,140), Point(70,140))

18 tree.setFillColor('darkGreen')

19 paper.add(tree)

20

21 smoke = Path(Point(155,70), Point(150,65), Point(160,55), Point(155,50))

22 paper.add(smoke)

23

24 sunraySW = Path(Point(225,75), Point(210,90))

25 sunraySW.setBorderColor('yellow')

26 sunraySW.setBorderWidth(6)

27 paper.add(sunraySW)

28 sunraySE = Path(Point(275,75), Point(290,90))

29 sunraySE.setBorderColor('yellow')

30 sunraySE.setBorderWidth(6)

31 paper.add(sunraySE)

32 sunrayNE = Path(Point(275,25), Point(290,10))

33 sunrayNE.setBorderColor('yellow')

34 sunrayNE.setBorderWidth(6)

35 paper.add(sunrayNE)

36 sunrayNW = Path(Point(225,25), Point(210,10))

37 sunrayNW.setBorderColor('yellow')

38 sunrayNW.setBorderWidth(6)

39 paper.add(sunrayNW)

FIGURE 3.10: Complete source code for drawing our house (continued on next page).

68

• Text and Image classes

• The Text class is used for rendering character strings within the drawing area of the canvas.

The syntax is

Text (s t r i ng , f ont s i z e =12)

• Note, the way to write a text to a canvas object is:

announcement = Text (’ This i s my announcement ’)

announcement . move (100 ,180)

canvasExample . add (announcement)

• The reference point for a text object is the center of the text.

• The library cs1graphics also includes an Image class that provides support for using a raw

image loaded from a file. An image object is constructed

myImage = Image (’ l i g h t b u l b . g i f ’) #Can a l s o be jpg , bmp, t i f f)

myImage . move (100 ,180)

canvasExample . add (myImage)

• The reference point for an image object is aligned with the top left corner of the image.

• Rotating, Scaling, and Flipping

• All Drawable objects can be rotated, scaled, or slipped. The reference point of a shape stays

fixed during the transformation.

• Note, there is a method to move the reference point without moving the object. The method

is adjustReference(dx,dy). Note, we may even move the reference point away from the shape

itself. This adjusting of the reference point is useful for the ensuing rotation.

69

• Rotating: The rotate method rotates an object clockwise around the reference point with

the specified angle given in degrees. For example,

diamond = Square (40 , Point (100 ,100))

diamond . r o t a t e (20)

#Or , change the r e f e r e n c e po int f i r s t

b lock = Square (40 , Point (100 ,100))

b lock . ad jus tRe f e r ence (−20 ,20)

block . r o t a t e (20)

• Scaling: All Drawable objects support a method scale that takes a single parameter spec-

ifying a positive multiplicative factor by which the object is to be scaled. Note, if the

parameter is greater than 1, then the object enlarges while if the parameter is less than 1,

then the object shrinks. The reference point remains fixed.

70

• Flipping: All Drawable objects support a method flip() which reflects the object about the

vertical line through the reference point. The method flip() also accepts an angle in degrees

as a parameter this rotation the line of reflection.

• Cloning: The Drawable types support a clone() method that returns a brand new copy.

The clone has precisely the same settings as the original object, is not automatically added

to any canvas. Once created, the clone can be manipulated independent of the original. For

example,

otherTree = t r e e . c l one ()

otherTree . move (170 ,30)

otherTree . s c a l e (1 . 2)

paper . add (otherTree)

• The next page gives an overview of the Drawable objects.

Object-Oriented Programming in Python, © Copyright 2014 by Michael H. Goldwasser and David Letscher

94 Chapter 3 Getting Started with Graphics

Rectangle

width

height

Rectangle(w, h, centerPt)

getWidth()

setWidth(w)

getHeight()

setHeight(h)

Shape

borderColor

borderWidth

getBorderColor()

setBorderColor(color)

getBorderWidth()

setBorderWidth(width)

Text

message

fontsize

fontColor

Text(message, fontsize)

getMessage()

setMessage(message)

getFontSize()

setFontSize(fontsize)

getFontColor()

setFontColor(color)

Layer

contents

Layer()

add(drawable)

remove(drawable)

clear()

Path

points

Path(pt1, pt2, ...)

addPoint(point, index)

setPoint(point, index)

deletePoint(index)

getPoint(index)

getNumberOfPoints()

clearPoints()

Polygon

points

Polygon(pt1, pt2, ...)

addPoint(point, index)

setPoint(point, index)

deletePoint(index)

getPoint(index)

getNumberOfPoints()

clearPoints()

Square

Square(size, centerPt)

getSize() setSize(s)

FillableShape

fillColor

getFillColor()

setFillColor(color)

Drawable

depth transformation referencePoint

move(dx, dy) rotate(angle) getReferencePoint()

moveTo(x, y) scale(factor) adjustReference(dx, dy)

getDepth() flip(angle) wait()

setDepth(depth) clone()

Circle

radius

Circle(r, centerPt)

getRadius()

setRadius(r)

FIGURE 3.4: An overview of the Drawable objects.

13. Inheritance (sections 9.1, 9.2, 9.3, 9.4)

• We introduce the concept of inheritance. This is a technique that allows us to define a

new (child) class based upon an existing (parent) class. The child class inherits all of the

members of its parent class, thereby reducing duplication of existing code.

• We typically differentiate a child class from its parent in two was.

• The child may introduce one or more behaviors beyond those that are inherited, thereby

augmenting the parent class.

• A child class may also specialize one or more of the inherited behaviors from the parent.

This specialization is accomplished by providing an alternative definition for the inherited

method, thereby overriding the original definition.

• Note, a child class might specialize certain existing behaviors while introducing others.

• Let us start with an example. First, let us build the Television class.

Program : Te l e v i s i on . py

Authors : Michael H. Goldwasser

David Let scher

#

class T e l e v i s i o n :

def i n i t (s e l f , brand , model) :

s e l f . brand = brand

s e l f . model = model

s e l f . powerOn = False

s e l f . muted = False

s e l f . volume = 5

s e l f . channe l = 2

s e l f . prevChan = 2

def togglePower (s e l f) :

s e l f . powerOn = not s e l f . powerOn

def toggleMute (s e l f) :

i f s e l f . powerOn :

s e l f . muted = not s e l f . muted

def volumeUp (s e l f) :

i f s e l f . powerOn :

i f s e l f . volume < 10 :

s e l f . volume += 1

s e l f . muted = False

return s e l f . volume

72

73

def volumeDown(s e l f) :

i f s e l f . powerOn :

i f s e l f . volume > 0 :

s e l f . volume −= 1

s e l f . muted = False

return s e l f . volume

def channelUp (s e l f) :

i f s e l f . powerOn :

s e l f . prevChan = s e l f . channe l # record the curren t va lue

i f s e l f . channe l == 99 :

s e l f . channe l = 2 # wrap around to minimum

else :

s e l f . channe l += 1

return s e l f . channe l

def channelDown (s e l f) :

i f s e l f . powerOn :

s e l f . prevChan = s e l f . channe l # record the curren t va lue

i f s e l f . channe l == 2 :

s e l f . channe l = 99 # wrap around to maximum

else :

s e l f . channe l −= 1

return s e l f . channe l

def setChannel (s e l f , number) :

i f s e l f . powerOn :

i f 2 <= number <= 99 :

s e l f . prevChan = s e l f . channe l # record the curren t va lue

s e l f . channe l = number

return s e l f . channe l

def jumpPrevChannel (s e l f) :

i f s e l f . powerOn :

incoming = s e l f . channe l

s e l f . channe l = s e l f . prevChan

s e l f . prevChan = incoming

return s e l f . channe l

def s t r (s e l f) :

74

d i sp l ay = ’ Power s e t t i n g i s c u r r e n t l y ’ + str (s e l f . powerOn) +

’\n ’

d i sp l ay += ’ Channel s e t t i n g i s c u r r e n t l y ’ + str (s e l f . channe l

) +’\n ’

d i sp l ay += ’ Volume s e t t i n g i s c u r r e n t l y ’ + str (s e l f . volume)

+’\n ’

d i sp l ay += ’Mute i s c u r r e n t l y ’ + str (s e l f . muted)

return d i sp l ay

• Here is a Television class dagram:

• Augmentation: We wish to design a deluxe version of our television. We wish to add

support for managing a set of so called favorite channels. In particular, we have three new

behaviors in mind:

addToFavorites() - a method that adds the currently viewed channel to the set of

favorites (if not already there);

removeFromFavorites() - a method that removes the currently viewed channel from

the set of favorites (if it is present).

jumpToFavorite() - a method that jumps from the current channel setting to the next

higher channel in the set of favorites. However, if no favorites are numbered higher than the

current channel, it wraps around to the lowest favorite. If there are no favorites at all, the

channel remains unchanged.

• For this we need to import Television class from Television.py. We develop a new class

DeluxeTV that uses Television class as its parent. The syntax is as follows:

c l a s s DeluxeTV (T e l e v i s i o n) : #I n h e r i t a n c e i s i n d i c a t e d by p la c ing

the parent c l a s s in parenthese s

• With such a declaration, the new child inherits all existing methods of the parent class. We

need to specify the augmented functionality. So, the init method is as follows:

de f i n i t (s e l f) :

T e l e v i s i o n . i n i t (s e l f)

s e l f . f a v o r i t e s = []

• The state of a deluxe television includes all the attributes from Television, and now an

additional list of favorites.

75

• We then need to add the three functions as specified initially. Here is the entire definition

for the DeluxeTV class.

Program : DeluxeTV1 . py

Authors : Michael H. Goldwasser

David Let scher

#

#

from T e l e v i s i o n import T e l e v i s i o n

class DeluxeTV (T e l e v i s i o n) :

”””A t e l e v i s i o n t ha t maintains a s e t o f f a v o r i t e channe l s . ”””

def i n i t (s e l f , brand , model) :

”””Creates a new DeluxeTV ins tance .

The power i s i n i t i a l l y o f f , y e t when turned on the TV

i s tuned to channel 2 wi th a volume l e v e l o f 5 . The s e t

o f f a v o r i t e channe l s i s i n i t i a l l y empty .

”””

T e l e v i s i o n . i n i t (s e l f , brand , model) # parent

cons t ruc t o r

s e l f . f a v o r i t e s = []

def addToFavorites (s e l f) :

”””Adds the current channel to the l i s t o f f a v o r i t e s ,

i f not a l r eady the r e .

I f power i s o f f , t h e r e i s no e f f e c t .

”””

i f s e l f . powerOn and s e l f . channe l not in s e l f . f a v o r i t e s :

s e l f . f a v o r i t e s . append (s e l f . channe l)

def removeFromFavorites (s e l f) :

”””Removes the current channel from the l i s t o f f a v o r i t e s ,

i f p re sen t .

I f power i s o f f , t h e r e i s no e f f e c t .

”””

i f s e l f . powerOn and s e l f . channe l in s e l f . f a v o r i t e s :

s e l f . f a v o r i t e s . remove (s e l f . channe l)

76

def jumpToFavorite (s e l f) :

”””Jumps to the ” next ” f a v o r i t e channel as per the f o l l ow i n g

r u l e s .

In genera l , t h i s method jumps from the curren t channel s e t t i n g

to the next h i ghe r channel which i s found in the s e t o f

f a v o r i t e s . However i f no f a v o r i t e s are numbered h i ghe r than

the current channel , i t wraps around to the l owe s t f a v o r i t e .

I f t h e r e are no f a v o r i t e s , the channel remains unchanged .

Returns the r e s u l t i n g channel s e t t i n g .

I f power i s o f f , t h e r e i s no e f f e c t .

”””

i f s e l f . powerOn and len (s e l f . f a v o r i t e s) >0:

c l o s e s t = max(s e l f . f a v o r i t e s) # a guess

i f c l o s e s t <= s e l f . channe l : # no b i g g e r channel e x i s t

c l o s e s t = min(s e l f . f a v o r i t e s) # wrap around to min

else : # l e t ’ s t r y to ge t c l o s e r

for opt ion in s e l f . f a v o r i t e s :

i f s e l f . channe l < opt ion < c l o s e s t :

c l o s e s t = opt ion # a b e t t e r cho ice

s e l f . setChannel (c l o s e s t) # re l y on i n h e r i t e d method

return c l o s e s t

• Specialization

• One reason that the jumpToFavourite() method is complicated is because the collection of

favorite channels is unsorted within the internal list. This motivates the development of a

new class SortedSet.

• Our SortedSet will maintain a set of elements while ensuring that duplicates are removed

and that the elements are ordered. While the list class is not ideal, it is still useful. So, we

start with

c l a s s SortedSet (l i s t) :

• Note, we do not need any additional attributes. But we might want to override insert(index,

object) since it might interfere in the sorting process or introduce duplication. So we have

to define our own insert method.

• We also introduce a new method indexAfter(value) to determine the proper index for in-

serting a new element into a set. This method returns the index of the first element that is

strictly larger than the given parameter. When there is no such value it returns the length

of the entire set.

77

de f indexAfter (s e l f , va lue) :

walk = 0

whi le walk < l en (s e l f) and value >= s e l f [walk] :

walk += 1

return walk

• Notice that the indexAfter method is a public method because it seems useful enough to be

used in other programs. Also note, since our class is inherited from list class, our instance

is a list. So the syntaxes len(self) and self[index] are already defined.

• Now, we define insert method:

de f i n s e r t (s e l f , va lue) :

i f va lue not in s e l f :

p l ace = s e l f . indexAfter (va lue)

l i s t . i n s e r t (s e l f , p lace , va lue)

• Notice the last line explicitly invokes the parent list.insert.

• We also need to override the append method of the list class.

de f append (s e l f , ob j e c t) :

s e l f . i n s e r t (ob j e c t) #t h i s i s the i n s e r t from SortedSet

• The insert method above is from SortedSet since the object is specifically from the SortedSet

class. The parent’s methods are only applied in cases where there is no duly named method

explicitly in the native context.

• This is an example of the principle of polymorphism and a key to the object-oriented

paradigm. When the caller invokes a method on an object, the actual behavior depends

upon the precise type o f the given object.

• Here is a complete SortedSet class which we will need to build a better DeluxeTV class.

Program : Sor tedSe t . py

Authors : Michael H. Goldwasser

David Let scher

class SortedSet (l i s t) :

”””

Maintains an ordered s e t o f o b j e c t s (w i thout d u p l i c a t e s) .

”””

def i n i t (s e l f , i n i t i a l=None) :

””” De fau l t cons t ruc t o r c r e a t e s an empty Sor tedSe t .

I f i n i t i a l sequence i s g i ven as parameter , c r e a t e s

i n i t i a l c on f i g u r a t i on us ing those elements , wi th

d u p l i c a t e s removed .

”””

78

l i s t . i n i t (s e l f) # c a l l s the parent cons t ruc t o r

i f i n i t i a l :

s e l f . extend (i n i t i a l)

def indexAfte r (s e l f , va lue) :

”””

Find f i r s t index o f an element s t r i c t l y l a r g e r than g iven

va lue .

I f no element i s g r ea t e r than g iven value , t h i s r e turns the

l e n g t h o f the s e t .

”””

walk = 0

while walk < len (s e l f) and value >= s e l f [walk] :

walk += 1

return walk

def i n s e r t (s e l f , va lue) :

”””

Adds g iven element to the so r t ed s e t .

I f the va lue i s a l r eady in the se t , t h i s has no e f f e c t .

Otherwise , i t i s added in the proper l o c a t i o n .

va lue element to be added to the s e t .

”””

i f value not in s e l f : # avoid d u p l i c a t e s

p lace = s e l f . indexAfter (va lue)

l i s t . i n s e r t (s e l f , p lace , va lue) # the parent ’ s method

def append (s e l f , object) :

”””

I d e n t i c a l to i n s e r t (o b j e c t) .

”””

s e l f . i n s e r t (object)

79

• Here is a second version of DeluxeTV class:

Program : DeluxeTV2 . py

Authors : Michael H. Goldwasser

David Let scher

##

from T e l e v i s i o n import T e l e v i s i o n

from SortedSet import SortedSet

class DeluxeTV (T e l e v i s i o n) :

”””

Just l i k e a standard t e l e v i s i o n , but wi th a d d i t i o n a l

suppor t f o r maintaining and us ing a s e t o f f a v o r i t e channe l s .

”””

def i n i t (s e l f , brand , model) :

”””

Creates a new Te l e v i s i on ins tance .

The power i s i n i t i a l l y o f f . Upon the f i r s t time the TV i s

turned on , i t w i l l be s e t to channel 2 , and a volume l e v e l

o f 5 .

The t e l e v i s i o n maintains a l i s t o f f a v o r i t e channels ,

i n i t i a l l y empty .

”””

T e l e v i s i o n . i n i t (s e l f , brand , model) # parent

cons t ruc t o r

s e l f . f a v o r i t e s = SortedSet ()

def addToFavorites (s e l f) :

”””

Adds the current channel to the l i s t o f f a v o r i t e s , i f not

a l r eady the r e .

I f power i s o f f , t h e r e i s no e f f e c t .

”””

i f s e l f . powerOn :

s e l f . f a v o r i t e s . append (s e l f . channe l)

def removeFromFavorites (s e l f) :

80

”””

Removes the current channel from the l i s t o f f a v o r i t e s ,

i f p re sen t .

I f power i s o f f , t h e r e i s no e f f e c t .

”””

i f s e l f . powerOn and s e l f . channe l in s e l f . f a v o r i t e s :

s e l f . f a v o r i t e s . remove (s e l f . channe l)

def jumpToFavorite (s e l f) :

”””

Jumps to the ’ next ’ f a v o r i t e channel as per the f o l l ow i n g

r u l e s .

In genera l , t h i s behav ior jumps from the current channel

s e t t i n g to the next h i ghe r channel which i s found in the s e t

o f f a v o r i t e s . However i f t h e r e are no such h i gher channels ,

i t jumps to the o v e r a l l minimal f a v o r i t e . I f t h e r e are no

f a v o r i t e s a t a l l , t h i s has no e f f e c t on the channel s e t t i n g .

Returns the r e s u l t i n g channel s e t t i n g .

I f power i s o f f , t h e r e i s no e f f e c t .

”””

i f s e l f . powerOn and len (s e l f . f a v o r i t e s) >0:

r e s u l t I n d e x = s e l f . f a v o r i t e s . indexAfter (s e l f . channe l)

i f r e s u l t I n d e x == len (s e l f . f a v o r i t e s) :

r e s u l t = s e l f . f a v o r i t e s [0] # wrap around

else :

r e s u l t = s e l f . f a v o r i t e s [r e s u l t I n d e x]

s e l f . setChannel (r e s u l t)

return r e s u l t

81

• Further details

• There are some other behaviors from the list class which could be overridden. For example:

de f extend (s e l f , o ther) :

f o r element in other :

s e l f . i n s e r t (element)

• Recall that the extend method of the list class modifies the original list by adding all

elements of the other list to the end. Now the extend method of the SortedSet filters out

duplicates and maintains the sorted order.

• Recall, when we created the SortedSet class , we inherited from the existing list class

by “ class SortedSet(list):” In other words, we relied on the underlying storage mechanism

provided by the list class. The default constructor provided an empty list which by nature

is sorted and without duplicates.

• Now suppose we were to start with an initial list generated from a string; example, list(’hello’).

This list does not result in a sorted set. So, we override init as follows:

de f i n i t (s e l f , i n i t i a l=None) :

l i s t . i n i t (s e l f) #c a l l s the parent con s t ruc to r

i f i n i t i a l :

s e l f . extend (i n i t i a l) #t h i s r e s u l t s in a SortedSet l i s t

• Next, note that the add method of the list class is not a mutator. This method creates

and returns a new list that is a composition of two existing lists. This method also needs to

be overridden so as to create SortedSet.

de f a d d (s e l f , o ther) :

r e s u l t = SortedSet (s e l f) #c r e a t e s a new copy o f s e l f

r e s u l t . extend (other) #add other e lements o f t h i s copy

return r e s u l t

• The list class has its own sort method which is time-consuming and unnecessary for our

SortedSet class. So we do the following:

de f s o r t (s e l f) :

pass . #do nothing

• The list class has two other methods reverse and setitem which break conventions for

the SortedSet class. So, we raise an exception whenever one of these methods is called.

• Now we present definition of the entire SortedSet class.

82

Program : Sor tedSet1 . py

Authors : Michael H. Goldwasser

David Let scher

#

class SortedSet (l i s t) :

”””

Maintains an ordered s e t o f o b j e c t s (w i thout d u p l i c a t e s) .

”””

def i n i t (s e l f , i n i t i a l=None) :

”””

De fau l t cons t ruc t o r c r e a t e s an empty Sor tedSe t .

I f i n i t i a l sequence i s g i ven as parameter , c r e a t e s

i n i t i a l c on f i g u r a t i on us ing those elements , wi th

d u p l i c a t e s removed .

”””

l i s t . i n i t (s e l f) # c a l l s the parent cons t ruc t o r

i f i n i t i a l :

s e l f . extend (i n i t i a l)

def indexAfte r (s e l f , va lue) :

”””

Find f i r s t index o f an element s t r i c t l y l a r g e r than

g iven va lue .

I f no element i s g r ea t e r than g iven value , t h i s

r e tu rns the l e n g t h o f the s e t .

”””

walk = 0

while walk < len (s e l f) and value >= s e l f [walk] :

walk += 1

return walk

def i n s e r t (s e l f , va lue) :

”””

Adds g iven element to the so r t ed s e t .

I f the va lue i s a l r eady in the se t , t h i s has

no e f f e c t . Otherwise , i t i s added in the proper

83

l o c a t i o n .

va lue element to be added to the s e t .

”””

i f value not in s e l f : # avoid d u p l i c a t e s

p lace = s e l f . indexAfter (va lue)

l i s t . i n s e r t (s e l f , p lace , va lue) # the parent ’ s method

def append (s e l f , object) :

”””

I d e n t i c a l to i n s e r t (o b j e c t) .

”””

s e l f . i n s e r t (object)

def extend (s e l f , o ther) :

”””

Extends the s e t by i n s e r t i n g e lements from

the o ther s e t

”””

for element in other :

s e l f . i n s e r t (element)

def a d d (s e l f , o ther) :

”””

Returns new s e t which i s union o f t h i s s e t

and the o ther .

”””

r e s u l t = SortedSet (s e l f) # crea t e s new copy o f s e l f

r e s u l t . extend (other) # add other e lements to t h i s copy

return r e s u l t

def s o r t (s e l f) :

”””

This has no e f f e c t , as s e t i s a l r eady so r t ed .

”””

pass

def r e v e r s e (s e l f) :

”””

Sor t edSe t s cannot be reve r s ed .

84

This a lways r a i s e s a RuntimeError .

”””

raise RuntimeError (’ SortedSet cannot be r eve r s ed ’)

def s e t i t e m (s e l f , index , object) :

”””

Direc t manipulat ion o f e lements o f a Sor tedSe t

i s d i s a l l owed .

This a lways r a i s e s a RuntimeError .

”””

raise RuntimeError (’ This syntax not supported by SortedSet ’)

• When should inheritance (not) be used

• In the previous example, we noticed that some methods needed to be specialized (example,

insert), some had to be ignored (example, sort), and some had to raise exceptions (example,

reverse, setitem).

• There is an alternative way to take advantage of the existing list class without using inher-

itance.

c l a s s SortedSet :

de f i n i t (s e l f) :

s e l f . i t ems = l i s t () #an i n i t i a l empty l i s t

• The relationship between a parent and child class when using inheritance is an is-a rela-

tioship in that every DeluxeTV is a Television.

• When one class is implemented using an instance variable of another, this is a has-a rela-

tionship.

• We are implementing a SortedSet has a list approach, even though SortedSet is itself not

a list.

• Since we do not inherit from any parent class, we must explicitly provide support for any

behaviors that we want to offer. For example,

de f i n s e r t (s e l f , va lue) :

i f va lue not in s e l f . i t ems :

p lace = s e l f . indexAfter (va lue)

s e l f . i t ems . i n s e r t (place , va lue)

• Note that in this version of insert, there is no concept of calling the “parent” version of

insert in this context. Instead, we call self. items.insert to invoke the insert method of the

underlying list attribute.

85

• The advantage of avoiding inheritance is that we do not inherit unnecessary baggage of

methods. However, we do not inherit any of the necessary methods. Thus, we need to

explicitly provide them. Here is the SortedSet class created without using inheritance.

Program : Sor tedSet2 . py

Authors : Michael H. Goldwasser

David Let scher

#

#

#

class SortedSet :

”””Maintains an ordered s e t o f o b j e c t s (wi thout d u p l i c a t e s) . ”””

def i n i t (s e l f , i n i t i a l=None) :

””” De fau l t cons t ruc t o r c r e a t e s an empty Sor tedSe t .

I f i n i t i a l sequence i s g i ven as parameter , c r e a t e s i n i t i a l

c on f i g u r a t i on us ing those elements , wi th d u p l i c a t e s removed .

”””

s e l f . i t ems = l i s t ()

i f i n i t i a l :

s e l f . extend (i n i t i a l) # extend the s e t (not the l i s t)

def indexAfte r (s e l f , va lue) :

”””Find f i r s t index o f an element s t r i c t l y l a r g e r than g iven

va lue .

I f no element i s g r ea t e r than g iven value , t h i s r e turns the

l e n g t h o f the s e t .

”””

walk = 0

while walk < len (s e l f . i t ems) and value >= s e l f . i t ems [walk] :

walk += 1

return walk

def i n s e r t (s e l f , va lue) :

”””Adds g iven element to the so r t ed s e t .

I f the va lue i s a l r eady in the se t , t h i s has no e f f e c t .

Otherwise , i t i s added in the proper l o c a t i o n .

86

va lue element to be added to the s e t .

”””

i f value not in s e l f . i t ems :

p lace = s e l f . indexAfter (va lue)

s e l f . i t ems . i n s e r t (place , va lue)

def extend (s e l f , o ther) :

”””Extends the s e t by i n s e r t i n g e lements from the o ther s e t .

”””

for element in other :

s e l f . i n s e r t (element)

def a d d (s e l f , o ther) :

”””Returns new s e t which i s union o f t h i s s e t and the o ther .

”””

r e s u l t = SortedSet (s e l f) # crea t e s new copy o f s e l f

r e s u l t . extend (other) # add other e lements to t h i s

copy

return r e s u l t

def index (s e l f , va lue) :

”””Returns index o f va lue .

Raises a ValueError i f va lue not found .

”””

return s e l f . i t ems . index (value)

def remove (s e l f , e lement) :

”””Remove an element from the so r t ed s e t . ”””

s e l f . i t ems . remove (element)

def pop (s e l f , index=None) :

”””Pop element at g i ven index (l a s t by d e f a u l t) . ”””

return s e l f . i t ems . pop (index)

def c o n t a i n s (s e l f , e lement) :

”””Determine i f the e lement i s in the so r t ed s e t . ”””

return element in s e l f . i t ems

def g e t i t e m (s e l f , index) :

87

”””Get the element o f the so r t ed s e t a t the g iven index . ”””

return s e l f . i t ems [index]

def l e n (s e l f) :

”””Count the number o f e lements in the so r t ed s e t . ”””

return len (s e l f . i t ems)

def e q (s e l f , o ther) :

”””Determine i f two s e t s are e q u i v a l e n t . ”””

return s e l f . i t ems == other . i t ems

def l t (s e l f , o ther) : # l e x i c o g r a p h i c comparison

return s e l f . i t ems < other . i t ems

def s t r (s e l f) :

”””Return a s t r i n g r ep r e s en t a t i on o f the so r t ed s e t . ”””

return str (s e l f . i t ems)

• Class Hierarchies and cs1graphics

• Suppose we want to draw stars,

• We would like to be able to do the following:

medal = Star (5)

paper . add (medal)

• We use inheritance to avoid recreating everything from scratch.

• Start with

c l a s s Star (Polygon) :

• Note, a star with n rays is a polygon with 2n vertices. The geometry of a star depends on

both an outer radius, as well as an inner radius. We let the user specify the outer radius

and the ratio between the inner and outer radii.

88

• Here is a code:

• Here is a code to use inheritance to create a Square class as a child of a Rectangle class:

14. Structural recursion – Drawing a pyramind (sections 4.2, 4.3, 11.1)

• DNA to RNA Transcription

• Every organism consists of cells, all multicellular organisms have a cell and a cell nucleus.

• This nucleus contains the DNA, the hereditary material. This DNA is packed into chromo-

somes.

• DNA is short for Deoxyribonucleic acid. DNA is made up from 4 different bases (nu-

cleotides): Adenine (A), Thymine (T), Guanine (G), and Cytosine (C).

• RNA (Ribonucleic Acid) is synthesized in the nucleus and is very similar to DNA. To make

protein from DNA first RNA is made from DNA. This process is called transcription. The

RNA is then used to create proteins.

• RNA also consists of four nucleotides, three of them A, C, and G, and a fourth one Uracil

(U).

• Transcription creates an RNA sequence by matching a complementary base to each original

base in the DNA using

• We develop a program that asks the user to enter a DNA sequence, and returns the tran-

scribed RNA.

• So, a DNA sequence “AGGCTA” would be transcribed to “UCCGAU”.

Program : DNAtoRNA. py

Authors : Michael H. Goldwasser

David Let scher

dnaCodes = ’ACGT’

rnaCodes = ’UGCA’

dna = input (’ Enter a DNA sequence : ’)

rnaL i s t = []

for base in dna :

whichPair = dnaCodes . index (base)# index in t o dnaCodes

rnaLet te r = rnaCodes [whichPair] # corresp . index in t o rnaCodes

rnaL i s t . append (rnaLet te r)

rna = ’ ’ . j o i n (rnaL i s t) # jo in on empty s t r i n g

print (’ Transcr ibed in to RNA: ’ , rna)

89

90

• In what follows, we are using cs1graphics.py. The instructor will provide you

with alternative TKinter files to build these classes.

• Drawing a Pyramid

• We would like to draw pyramids (first the kind in (a) below and then (b)):

• The identifier numLevels stands for number of levels and unitSize represents the height of

each level. Here is the geometric picture for what we want to do:

• Here is a code. Understand this loop:

Program : pyramidLoop . py

Authors : Michael H. Goldwasser

David Let scher

#

from c s1g raph i c s import ∗

numLevels = 8 # number o f l e v e l s

u n i t S i z e = 12 # the h e i g h t o f one l e v e l

s c r e e n S i z e = u n i t S i z e ∗ (numLevels + 1)

paper = Canvas (s c r e enS i z e , s c r e e n S i z e)

centerX = s c r e e n S i z e / 2 .0 # same fo r a l l l e v e l s

crea t e l e v e l s from top to bottom

for l e v e l in range (numLevels) :

91

width = (l e v e l + 1) ∗ u n i t S i z e # width v a r i e s by l e v e l

block = Rectangle (width , u n i t S i z e)# he i g h t i s a lways un i t S i z e

centerY = (l e v e l + 1) ∗ u n i t S i z e

block . move(centerX , centerY)

block . s e t F i l l C o l o r (’ gray ’)

paper . add (block)

• Pyramid made of squares

• Here, we use a nested loop to create and position a series of squares that comprise each level.

Note, level k is comprised of (k + 1) squares. All the squares on a given level are centered

with the same y coordinate.

Program : pyramidNested . py

Authors : Michael H. Goldwasser

David Let scher

#

#

from c s1g raph i c s import ∗

numLevels = 8 # number o f l e v e l s

u n i t S i z e = 12 # the h e i g h t o f one l e v e l

s c r e e n S i z e = u n i t S i z e ∗ (numLevels + 1)

paper = Canvas (s c r e enS i z e , s c r e e n S i z e)

centerX = s c r e e n S i z e / 2 .0 # same fo r a l l l e v e l s

crea t e l e v e l s from top to bottom

for l e v e l in range (numLevels) :

a l l b l o c k s at t h i s l e v e l have same y−coord ina te

centerY = (l e v e l + 1) ∗ u n i t S i z e

le f tmostX = centerX − u n i t S i z e ∗ l e v e l / 2 .0

for blockCount in range (l e v e l + 1) :

b lock = Square (u n i t S i z e)

b lock . move(le f tmostX + u n i t S i z e ∗ blockCount , centerY)

block . s e t F i l l C o l o r (’ gray ’)

paper . add (block)

• Recursion – The Bull’s Eye

• Another form of repetition is recursion.

• Structural recursion is a natural way to define objects that have one or more (smaller)

instances of the same class as instances. For instance, an 8-level pyramid is a single bottom

level with a 7-level pyramid on top of it. A 7-level pyramid in turn is a single bottom level

92

with a 6-level pyramid on top of it. And so on, until a 1-level pyramid is a single block –

this is the base case.

• Functional recursion occurs when a behavior is expressed using a smaller version of that

same behavior. For instance, a function calls itself recursively.

• A Bullseye Class

• A Bull’s eye is a sequence of concentric circles with alternating colors. In other words, a

bull’s eye is a circle with a smaller bull’s eye positioned at the same center.

• To draw a bull’s eye we use structural recursion and develop a Bullseye class.

• Internally, a Bullseye instance maintains two attributes: outer, which is the outermost

circle, and rest, which is a reference to another bullseye providing the interior structure.

We allow the user to specify the total number of bands, the overall radius of the bullseye,

and the choice of two colors.

• The constructor accepts four parameters (numBands, radius, primary, secondary) where the

bands alternate in color starting with primary as the outermost band. The case case is

self. rest is set to None.

• The entire implementation is given on the next page.

Object-Oriented Programming in Python, © Copyright 2014 by Michael H. Goldwasser and David Letscher

Section 11.1 A Bullseye Class 363

1 from cs1graphics import *
2

3 class Bullseye(Drawable):

4 def __ init__(self, numBands, radius, primary='black', secondary='white'):

5 if numBands <= 0:

6 raise ValueError('Number of bands must be positive')

7 if radius <= 0:

8 raise ValueError('radius must be positive')

9

10 Drawable.__ init__(self) # must call parent constructor

11 self._outer = Circle(radius)

12 self._outer.setFillColor(primary)

13

14 if numBands == 1:

15 self._rest = None

16 else: # create new bullseye with one less band, reduced radius, and inverted colors

17 innerR = float(radius) * (numBands−1) / numBands

18 self._rest = Bullseye(numBands−1, innerR, secondary, primary)

19

20 def getNumBands(self):

21 bandcount = 1 # outer is always there

22 if self._rest: # still more

23 bandcount += self._rest.getNumBands()

24 return bandcount

25

26 def getRadius(self):

27 return self._outer.getRadius() # ask the circle

28

29 def setColors(self, primary, secondary):

30 self._outer.setFillColor(primary)

31 if self._rest:

32 self._rest.setColors(secondary, primary) # color inversion

33

34 def _draw(self):

35 self._beginDraw() # required protocol for Drawable

36 self._outer._draw() # draw the circle

37 if self._rest:

38 self._rest._draw() # recursively draw the rest

39 self._completeDraw() # required protocol for Drawable

FIGURE 11.2: Complete code for our Bullseye implementation (documentation excluded).

94

• Unfolding a recursion

• Here is a figure to portray the creation of a bullseye instantiated as Bullseye(3,120, ’red’,

’black’)

• To truly understand recursion, it helps to more carefully trace the complete execution

through a process called unfolding a recursion.

• The next page gives the complete execution. Note, the last case is traced as well, but the

construction algorithm proceeds differently because the desired number of bands is one. An

appropriate outer circle is constructed and colored, but the rest of this bullseye is set to

None.

Object-Oriented Programming in Python, © Copyright 2014 by Michael H. Goldwasser and David Letscher

Section 11.1 A Bullseye Class 365

B
u

lls
e
ye

B
u

lls
e
ye

B
u

lls
e
ye

C
ir
cl

e

C
ir
cl

e

C
ir
cl

e

C
ir
cl

e
(4

0
)

se
tF

ill
C

o
lo

r(
'
r
e
d
'

)

B
u

lls
e
ye

(1
,

4
0

,
'
r
e
d
'

,
'
b
l
a
c
k
'

)

_
o

u
te

r

_
re

st
_

re
st

C
ir
cl

e
(1

2
0

)

se
tF

ill
C

o
lo

r(
'
r
e
d
'

)

_
o

u
te

r

B
u

lls
e
ye

(2
,

8
0

,
'
b
l
a
c
k
'

,
'
r
e
d
'

)
C

ir
cl

e
(8

0
)

se
tF

ill
C

o
lo

r(
'
b
l
a
c
k
'

)

_
o

u
te

r

FIGURE 11.4: Unfolding the recursion Bullseye(3, 120, 'red', 'black')

96

• Additional Bullseye methods

• Our class supports several additional methods, getNumBands and getRadius method. Note,

getRadius is not recursive; rather this invokes the getRadius method of the Circle instance

(not of another Bullseye instance). This is an example of polymorphism, as both classes

support a getRadius method with different underlying implementations.

• The mutator setColors(primary, secondary) recolors an existing bullseye.

• Having inherited from Drawable, our bullseye automatically supports behaviors such as

move, scale, rotate, clone.

• But, we are responsible for implementing the draw method to display the bullseye.

• Here is a sequence diagram:

• Finally, a word of caution: Every recursion must have a base case.

15. Procedural Recursion – Binary search (sections 11.3, 11.4)

• Functional Recursion

• Recall, the factorial of a number: n! = n · (n− 1) · (n− 1) · (n− 2) · · · 3 · 2 · 1

• The number of ways that n items can be ordered (permutations) is n!

• Note, n! = n · (n−1)!. This calls for a recursion (although, a loop could also be easily used).

• Each time a function is called, the system creates an activation record to track the state of

that particular invocation. In the context of recursion, each individual call to the function

executes the same body of code, yet with a separate activation record.

• Here is a figure to explain the recursion involved in factorial(4):

• Binary Search

• We want to know whether a specific value occurs in a list.

• Python’s list class uses a sequential search. That is, the program starts scanning from

the beginning of the list until it either finds what it is looking for, or reaches the end of the

list and reports a failure.

• Assume that the list of values is sorted. For example, a lexicon is a list of strings. It is

preferable to maintain a sorted list.

• Algorithmic Design

• In binary search we go through a sorted list by aiming right at the middle. If our target

value is not right in the middle, then it is in one of the two sub-lists; one of the left and one

on the right. In other words, the search now proceeds to one of the half-lists and we repeat

with recursion.

• The advantage of the binary search in comparison to the sequential list is that the binary

search is much faster. Using binary search on a list of length n, we obtain a result within

log2(n) number of steps. Whereas, the sequential search can take-up to n steps.

97

98

• Here is an implementation.

• Here is a diagram of an example: searc([’B’,’E’,’G’,’I’,’N’,’S’], ’F’) :

• This is not an ideal implementation because the recursion relies on creating a new list which

is half the original list. Creating this slice takes time proportional to the length of the slice,

and thus ruining the benefits of the binary search algorithm.

99

• Here is a better implementation – note, we do not create new sublists.

• Passing a reference to the list is quite efficient, as it does not involve copying the object. We

use indices start and stop. Note, the idea is the same as in the previous case, but we save

time by simply not copying sublists. Here is a diagram for the same example, searc(lexicon,

’F’) where lexicon = [’B’,’E’,’G’,’I’,’N’,’S’] :

100

• Sometimes we are not looking for an exact match of our target in the given list. Sometimes

we want to just match the first letter (in case of word search) or first digit (in case of number

search):

• Here is an implementation of the prefixSearch:

16. Container Classes (list vs. tuple; Dictionary, Set, Frozen Set (sections 12.1,

12.2, 12.3)

• Python has several classes that provide support for managing a collection. Example, list,

tuple. We call any such object a container.

• By design, Python’s containers all support certain common syntaxes. Example, for element

in data, element in data, len(data).

• There are differences in the behaviors and efficiencies of operations in the various container

classes.

• We first look at examples. Try out the following:

##

###

#L i s t s

##

###

l i s t 1 = l i s t () #Constructor

l i s t 1 . append (’ mathematics ’)

l i s t 1 . append (10)

l i s t 1 . append ([])

l i s t 1 . append ((4 , 5 , 6))

print (l i s t 1)

#L i s t i s ordered , mutable , and heterogeneous

l i s t 2 = [’ phys i c s ’ , (2 , 3 , 5) , [2 0 , 3 0] , 256] #L i t e r a l form

##

###

#Tuples

##

###

tup le1 = tuple () #Constructor

tup le1 . append (’ mathematics ’) #Wil l g i v e A t t r i b u t e E r r o r

#Tuples are not mutable .

tup le2 = (’ mathematics ’ , 24 , [1 , 2] , (3 , 4 , 5))

#L i t e r a l form

#Tuple i s ordered and heterogeneous .

#Tuples are not mutable .
101

102

##

###

#Dict ionary

##

###

i n f o = dict () #Constructor

i n f o [’Name ’] = ’ Jane ’

i n f o [’Age ’] = 11

i n f o [’ Grade ’] = 5

print (i n f o)

f r u i t s = { ’ sweet ’ : ’mango ’ , ’ b i t t e r ’ : ’ lemon ’}
#L i t e r a l form

#Unl ike l i s t s or t u p l e s , the keys in a d i c t i o n a r y can

#be non−numeric .

#D i c t i o n a r i e s are mutable , a s s o c i a t i v e , and he terogeneous .

#D i c t i o n a r i e s are not ordered .

##

###

#Set

##

###

s = set () #Constructor

s . add (32)

s . add (42)

s . add (3)

s . add (’ abc ’)

print (s)

t = { ’ a ’ , 23 ,45} #L i t e r a l

print (t)

103

#Set i s unordered .

#Set i s mutable , he terogeneous .

#Set i s not a s s o c i a t i v e .

##

###

#Frozen Set

##

###

f 1 = frozenset () #Constructor . Cannot be mutated .

f 2 = frozenset ([3 , 4 , ’ abc ’])

#f2 c r e a t e d from a l i s t

#The only way to c r e a t e a f r o z e n s e t i s by us ing

#an i t e r a b l e parameter (l i s t , se t , t u p l e , e t c .) .

#Frozenset i s not mutable (analogue o f a t u p l e) .

#Frozenset i s not ordered , not a s s o c i a t i v e (analogue o f a s e t) .

#Frozenset i s he terogeneous .

##

###

#Array

##

###

#Arrays are meant to be homogeneous

#We need to import the array module to be a b l e to

#b u i l d an array .

import array

a1 = array . array (’d ’ , [1 , 3 . 4 , 5 . 5])

print (a1)

Commonly used type codes :

Code Type Minimum s i z e in bytes

104

’ b ’ int 1

’B ’ int 1

’u ’ Unicode charac t e r 2

’h ’ int 2

’H ’ int 2

’ i ’ int 2

’ I ’ int 2

’ l ’ int 4

’L ’ int 4

’ f ’ f loat 4

’d ’ f loat 8

#Arrays are ordered and mutable .

• Here are some aspects of any container:

• order – The classes list, tuple, array are used to represent an ordered sequence of

elements. They use the concept of index for designing the location of an element within the

sequence.

• mutability – The distinction between a list and a tupe is that the list is mutable whereas

the tuple is immutable. So we can insert, replace, or remove elements of a list, which we

cannot do with a tuple.

• associativity – Python’s dict (dictionary) class is used to represent an association between

a key and its value.

• heterogeneity – A collection is called heterogeneous if it can hold elements of different

types. If a collection can hold only one type of elements, then that collection is called

homogeneous. Most of Python’s containers support heterogeneity.

• storage – Most of Python’s containers are referential, in that the value of the elements

are not stored internal to the container, but indirectly as references to other objects. This

is the reason that heterogeneity is supported. But the indirect nature of the storage can be

less efficient in terms of memory usage and access time. For high-performance applications,

Python supports an array class, which provides compact storage for a collection of data

drawn from a chosen primitive type.

• Here is a summary:

105

• Two Familiar Containers: list and tuple

• The classes list and tuple are used to manage an ordered sequence of elements. The position

of a particular element within that sequence is designated with an index.

• We may view both the list and tuple as an association between indices and values. Note,

the indices must be consequent integers from 0 to one less than the length of the sequence.

• Limitations to the Use of a list or tuple

• Lack of permanency

• The elements in a list are identified using indices. But if one element is removed, then

indices of all the elements which come after changed. For instance, in a list named employee,

say employee[15] retires, then the employees previously numbered 16, 17, 18, . . . are now

numbered 15, 16, 17, In other words, This means, an index cannot serve as a meaningful

and permanent identifier for an element.

• The problem of large integers

• Suppose we want to identify employees by their social security numbers, or identify books

using their 13-digit ISBN numbers. Placing these elements in a long enough list to accommo-

date all the social security numbers or ISBN numbers is impractical, since we are interested

only in a small fraction of such a long list.

• Non-numerc identification

• There are elements which do not have numbering scheme. For example, movies do not have

ISBN or other numbering schemes. Or countries, their capital cities, or cities and their

populations. Instead of a list, it would be much better to use a dict class

• Dictionaries

• A dictionary is an associative container. It represents a mapping from objects known as

keys to associated objects known as values. Unlike lists or tuples, in the dictionaries keys

can be non-numeric.

• The keys: A key serves as an identifier when accessing a particular value in the dictionary.

They keys within a dictionary are required to be unique. Thus, employers rely on social

security numbers of their employees, or books are numbered using their unique ISBNs. Note,

keys could themselves be tuples so as to make certain that they are unique. For instance,

the first name of students may not suffice to distinguish students. It is better to use the

tuple (firstname, lastname) as a key.

• Keys must be drawn from an immutable class, such as int, str, or tuple. The elements of

a dictionary are not inherently ordered as with a list. If a key were allowed to change, the

original placement of the element may no longer match the expected placement based on

the updated key.

• In other words, all keys within a given dictionary much be unique and immutable.

• The values

• There are no restrictions on the allowable values in a dictionary. They can be from any

class, and they are not required to be unique.

• Python’s dict Class: Here is an example of building a dictionary

f l o w e r s = d i c t () #Standard cons t ruc to r syntax . Or ,

f l o w e r s = {} #L i t e r a l form

106

f l o w e r s [’ red ’] = ’ rose ’

f l o w e r s [’ yel low ’] = ’ d a f f o d i l ’

f l o w e r s [’ white ’] = ’ l i l l y ’

• Here is another dictionary:

DnaToRna = { ’A’ : ’ U’ , ’C’ : ’G’ , ’G’ : ’ C’ , ’T’ : ’ A’}

• Supported behaviors

• Here are some selected supported behaviors. Build a dictionary of your choice either using

a constructor or in a literal approach, and implement every method in the list below.

• Containers of Containers

• One may have a list, tuple, dict contain any type of object. In particular, one may have

a list of lists, a tuple of dictionaries, a dictionary of lists etc.,.

• Modeling Multidimensional Tables

• Here is a Tic-tac-toe board written in the form of a list of lists:

game = [[’ X’ , ’X’ , ’O’] , [’O’ , ’O’ , ’X’] , [’X’ , ’O’ , ’X ’]]

• Storing a two-dimensional data set in this way is called row-major order:

107

• Note, game[i][j] returns the entry on the i-th row and j-th column.

• We may also have built game in a column-major order, as a list of columns.

• Modeling Many-to-Many Relationships

• Recall that a dictionary is a many-to-onerelationship between keys and values.

• Distinct keys could very well map to a single value, but one key cannot be mapped to many

values.

• Suppose we build a dictionary with a many-to-many relationship. That is, one key gets

mapped to a tuple.

• For instance, suppose we build a dictionary flowers where we have flowers[’red’] = (’rose’,

’hibiscus’) and several such examples.

• Then ’rose’ in flowers returns False since ’red’ is not a key.

• Likewise ’rose’ in flowers.values() is also False, since flowers.values() is a list of tuples.

• The command ’rose’ in flowers[’red’] returns True.

• Reverse Dictionary

• As we know, a dictionary is a many-to-one relationship. Therefore, a reverse dictionary

would be a one-to-many relationship. Here is a function to build a reverse-dictionary from

a dictionary. Understand and test it.

de f bu i ldReverse (d i c t i o n a r y) :

””” Return a r e v e r s e d i c t i o n a r y based upon the o r i g i n a l . ”””

r e v e r s e = {}
f o r key , va lue in d i c t i o n a r y . i tems () : #map value back to key

i f va lue in r e v e r s e :

r e v e r s e [va lue] . append (key) #add to e x i s t i n g l i s t

e l s e :

r e v e r s e [va lue] = [key] #e s t a b l i s h new l i s t

r e turn r e v e r s e

• 12.4: Sets

• A set is an unordered collection of unique elements.

108

• Python has two new built-in classes: set and frozenset. They both model the concept of

a mathematical set, with one distinction: set is mutable while frozenset is immutable.

• Note though, elements added to a set must be immutable.

• Constructor: The syntax for constructing a set is: set(), which by default produces an

empty set.

• There is no literal form for a set, but a set can be formed from a list, string, tuple, or

dictionary.

• Example, set([1,2,3,4]), or set(’aeiou’), or set((1,2,3)).

• Similarly, one may build a frozenset from a list by using the syntax, frozenset(list).

• Sets and Frozensets support accessors listed here:

109

• Here are methods which mutate sets.

• Some of these mutators can be applied to frozen sets. The intersection (or union) of

frozensets results in a frozenset.

• Check out which of the mutators can be applied to frozensets. Use examples.

• What happens when we consider intersection of a set with a frozenset? Order matters.

17. Event-driven programming, graphics module, event handling (sections 15.1,

15.2, 15.3, 15.4)

• An event-driven programming is a paradigm where an executing program waits passively

for external events to occur and then responds appropriately to those events.

• We focus primarily on graphical user interfaces (GUIs).

• Basics of Event-Driven Programming

• Here is a basic example of event-driven programming:

name = input (”What i s your name? ”) #Wait f o r re sponse from user

p r i n t (” He l lo %s . Nice to meet you . ” %name)

• Here is another example:

paper = Canvas ()

cue = paper . wait () #Wait f o r re sponse from user

b a l l = C i r c l e (10 , cue . getMouseLocation ())

b a l l . s e t F i l l C o l o r (’ red ’)

paper . add (b a l l)

• Both these examples are sequential. In most software, the user has more freedom to control

the actions of a program. At any point, a user has the option of selecting menu items,

entering keyboard input, using a scroll bar, selecting text, and much more.

• Event handling is an approach by which the program is able to declare various events

that should be available to the user, and then provides explicit code that should be followed

to handle each individual type of event when triggered. This piece of code is known as an

event handler.

• Event handlers

• Often a separate event handler is declared for each kind of event that can be triggered by a

user interaction.

• An event handler is typically implemented either as a stand-alone function or as an instance

of a specially defined class.

• When programmed as a stand-alone function, event handlers are known as callback func-

tions.

• The appropriate callback function is registered in advance as a handler for a particular kind

of event. This is sometimes described as registering to listen for an event, and thus handlers

are sometimes called listeners. Each time such an event subsequently occurs, this function

will be called.

• With object-oriented programming, event handling is typically implemented through an

event-handling class. An instance of such a class supports one or more member functions

that will be called when an appropriate event occurs. The advantage of this technique over

use of pure callback function is that a handler can maintain state information to coordinate

the responses for a series of events. For instance, wait() is supported by cs1graphics module.

• The event loop
110

111

• The design of event-driven software is quite different from our traditional flow-driven pro-

gramming, although there is still a concept of the main flow of control. When the software

first executes, initialization is performed in traditional fashion, perhaps to create and deco-

rate one or more windows and set up appropriate menus. It is during this initialization that

event handlers are declared and registered.

• We want our software to handle any number of predefined events triggered in arbitrary

order.This is accomplished by having the main flow of control enter what is known as an

event loop. This is essentially an infinite loop that does nothing.

• When an event occurs, the loop stops to look for an appropriately registered handler, and

if found that handler is called (otherwise the event is ignored).

• When a handler is called, the flow of control is temporarily ceded to the handler, which

responds appropriately. Once the handler completes its task, the default continuation is to

re-enter the event loop. If the appropriate consequence of a user action is to “quit’ the event

loop.

• For example, every time we use the cs1graphics package, an event loop runs concurrently

with the rest of our program. Every time we click on the canvas’ window or typed on the

keyboard the event loop was informed. One exception is when we click on the icon to close

the window; the event loop triggers a built-in handler that closes the window. When all

canvas windows are closed, the event loop terminates. This starting and stopping of the

event loop happens automatically.

• Threading

• There are several forms of event-driven programming. The first question at hand is what

happens to the flow of control once an event loop begins. In one model, the primary program

cedes the flow of control to the event loop

• Another model uses what is known as multithreaded programming, allowing the main

program to continue executing even while the event loop is monitoring and responding to

events.

112

• The main routine and this event loop run simultaneously as separate threads of the pro-

gram. Threading can be supported by the programming language and the underlying oper-

ating system. In reality the threads are sharing the CPU each given small alternating time

slices in which to execute.

• What follows heavily depends on cs1graphics.py. Alternatively, you may work

with codes written with TKinter available in the appendix.

• The EventHandler Class

• The cs1graphics module includes a generic EventHandler class that should be used as

a parent class when defining your own handlers. The two methods of this class are the

constructor itself and a handle mathod.

• The handle method does not itself do anything. This method is overridden by a child class

to describe the proper action in case of an event. The parameter to the handle method

is an instance of an Event class, used to describe the particular event that occurred. For

example,

c l a s s BasicHandler (EventHandler) :

de f handle (s e l f , event) :

p r i n t (’ Event Triggered ’)

• Registering a handler with a graphics object

• For an event handler to be active, it must be registered with one or more graphical objects.

• Both the Canvas and Drawable classes support two additional methods named addHandler

and removeHandler to register and unregister a handler. For instance,

s imple = BasicHandler ()

paper=Canvas ()

paper . addHandler (s imple)

• Using a similar technique we can register an event handler directly with a particular drawable

object:

sun = C i r c l e (30 , Point (50 , 50))

sun . s e t F i l l C o l o r (’ yel low ’)

paper = Canvas ()

paper . add (sun)

s imple = BasicHandler ()

sun . addHandler (s imple)

• Now the handler can be trigged only when an event is received by the sun. Clicking on any

other part of the canvas will not suffice.

113

• Note, it is possible to register a single handler with multiple shapes or canvases, and to have

multiple handlers registered with the same shape or canvas. If there are multiple handlers

registered with an object and a relevant event is triggered then each of those handlers is

called in the order that they were registered.

• A Handler with State Information

• Here is an example of a handler that counts the number of times that it has been triggered.

Program : CountingHandler . py

Authors : Michael H. Goldwasser

David Let scher

#

from c s1g raph i c s import ∗

class CountingHandler (EventHandler) :

def i n i t (s e l f) :

EventHandler . i n i t (s e l f) # c a l l the parent cons t ruc t o r !

s e l f . count = 0

def handle (s e l f , event) :

s e l f . count += 1

print (’ Event Tr iggered . Count : ’ , s e l f . count)

• Here is another example that updates a graphical count in the form of a Text object.

Program : Tal lyHandler . py

Authors : Michael H. Goldwasser

David Let scher

#

#

from c s1g raph i c s import ∗

class Tal lyHandler (EventHandler) :

def i n i t (s e l f , textObj) :

EventHandler . i n i t (s e l f)

s e l f . count = 0

s e l f . t e x t = textObj

s e l f . t e x t . setMessage (str (s e l f . count)) # re s e t to 0

def handle (s e l f , event) :

s e l f . count += 1

s e l f . t e x t . setMessage (str (s e l f . count))

• The Event Class

114

• Sometimes, an event handler may need information about the triggering event, such as the

mouse location or the type of event that was received. So, we pass an additional parameter

de f handle (s e l f , event) : #Here , event i s an in s t ance o f an Event

c l a s s

• The Event class supports a method getTrigger() which returns a reference to the underlying

object upon which the event was originally triggered (a canvas or a drawable object). Using

this information, we can rewrite the class HandleOnce as follows:

c l a s s HandleOnce (EventHandler) :

de f handle (s e l f , event) :

p r i n t (” That ’ s a l l f o l k s ! ! ! ”)

event . g e tTr i gge r () . removeHandler (s e l f)

paper = Canvas ()

oneTime = HandleOnce ()

paper . addHandler (oneTime)

• The Event class also supports a getDescription() accessor that returns a string indicating

the kind of event that occurred.

• Mouse Events

• Mouse events can be recognized by getDescription() method which returns a string, ’mouse

click’, or ’mouse release,’ or ’mouse drag.’ For instance, when the user clicks the mouse and

leaves the mouse, it results in two mouse events: ’mouse click’ and ’mouse release.’

• The precise position of the mouse is given by getMouseLocation(). This method of the Event

class returns a Point instance. Here is a program that uses these methods.

c l a s s CircleDrawHandler (EventHandler) :

de f handle (s e l f , event) :

i f event . g e tDe s c r i p t i on () == ’ mouse c l i c k ’ :

c = C i r c l e (5 , event . getMouseLocation ())

event . g e tTr i gge r () . add (c)

paper = Canvas (100 ,100)

handler = CircleDrawHandler ()

paper . addHandler (handler)

• Notice that this handler ignores other kinds of events. Try changing the code so that it

draws the circle on a mouse release.

• The method getOldMouseLocation() indicates where the mouse was before a ’mouse drag’

event was implemented.

• Here is a program to understand ’mouse drag’ event.

Program : ClickAndReleaseHandler . py

Authors : Michael H. Goldwasser

115

David Let scher

#

#

from c s1g raph i c s import ∗

class ClickAndReleaseHandler (EventHandler) :

def i n i t (s e l f) :

EventHandler . i n i t (s e l f)

s e l f . mouseDragged = False

def handle (s e l f , event) :

i f event . g e tDe s c r i p t i on () == ’ mouse c l i c k ’ :

s e l f . mouseDragged = False

e l i f event . g e tDe s c r i p t i on () == ’ mouse drag ’ :

s e l f . mouseDragged = True

e l i f event . g e tDe s c r i p t i on () == ’ mouse r e l e a s e ’ :

i f s e l f . mouseDragged :

print (’Mouse was dragged ’)

else :

print (’Mouse was c l i c k e d without dragging ’)

i f name == ’ ma in ’ :

paper = Canvas ()

dragDetector = ClickAndReleaseHandler ()

paper . addHandler (dragDetector)

• Keyboard Events

• When a keyboard is used, the getDescription() reports ’keyboard.’ If needed, the getMouse-

Location() is supported for a keyboard event.

• Keyboard events also support a behavior getKey() that returns the single character that

was typed on the keyboard to trigger the event.

• Note that if the user types a series of characters, each one of those triggers a separate event.

116

• Here is a program showing how to display characters graphically as they are typed within a

canvas.

Program : KeyHandler . py

Authors : Michael H. Goldwasser

David Let scher

#

from c s1g raph i c s import ∗

class KeyHandler (EventHandler) :

def i n i t (s e l f , textObj) :

EventHandler . i n i t (s e l f)

s e l f . textObj = textObj

def handle (s e l f , event) :

i f event . g e tDe s c r i p t i on () == ’ keyboard ’ :

s e l f . textObj . setMessage (s e l f . textObj . getMessage () + event .

getKey ())

e l i f event . g e tDe s c r i p t i on () == ’ mouse c l i c k ’ :

s e l f . textObj . setMessage (’ ’) # c l e a r the t e x t

i f name == ’ ma in ’ :

paper = Canvas ()

t ex tDi sp lay = Text (’ ’ , 12 , Point (100 ,100)) # empty s t r i n g

paper . add (textDi sp lay)

echo = KeyHandler (t extDi sp lay)

paper . addHandler (echo)

• Timers

• Other than user triggered activities involving mouse and keyboard, there are other events

generated internally.

• The cs1graphics module includes the Timer class. A timer instance is a self-standing object

that is used to generate new events. The syntax Timer() creates a timer that generates an

event after ten seconds has elapsed. The start() method must be called to begin the timer’s

clock.

• For a timer to be useful, there must be a corresponding handler that is registered to listen

for those events.

• Here is an example of animating a rotating shape:

117

• This program rotates the circle around its center every tenth of a second. This will continue

until the canvas is closed.

• Monitors

• The Monitor class supports two methods, wait() and release(). When wait() is called,

control of that flow will not be returned until the monitor is somehow released. Here is an

example where Monitor is used.

118

• Programming Using Events

• Adding and Moving Shapes on a Canvas: Here is a program. Explain what happens.

Program : NewShapeHandler . py

Authors : Michael H. Goldwasser

David Let scher

#

#

from c s1g raph i c s import ∗

class ShapeHandler (EventHandler) :

def i n i t (s e l f) :

EventHandler . i n i t (s e l f)

s e l f . mouseDragged = False

def handle (s e l f , event) :

shape = event . g e tTr i gge r ()

i f event . g e tDe s c r i p t i on () == ’ mouse drag ’ :

o ld = event . getOldMouseLocation ()

new = event . getMouseLocation ()

shape . move(new . getX ()−old . getX () , new . getY ()−old . getY ())

s e l f . mouseDragged = True

e l i f event . g e tDe s c r i p t i on () == ’ mouse c l i c k ’ :

s e l f . mouseDragged = False

e l i f event . g e tDe s c r i p t i on () == ’ mouse r e l e a s e ’ :

i f not s e l f . mouseDragged :

shape . s c a l e (1 . 5)

e l i f event . g e tDe s c r i p t i on () == ’ keyboard ’ :

shape . s e t F i l l C o l o r (Color . randomColor ())

class NewShapeHandler (EventHandler) :

def i n i t (s e l f) :

EventHandler . i n i t (s e l f)

s e l f . shapeCode = 0

s e l f . hand l e r = ShapeHandler ()

s i n g l e in s tance hand les a l l shapes

def handle (s e l f , event) :

i f event . g e tDe s c r i p t i on () == ’ mouse c l i c k ’ :

i f s e l f . shapeCode == 0 :

s = C i r c l e (10)

119

e l i f s e l f . shapeCode == 1 :

s = Square (10)

e l i f s e l f . shapeCode == 2 :

s = Rectangle (15 ,5)

e l i f s e l f . shapeCode == 3 :

s = Polygon (Point (5 , 5) , Point (0 ,−5) , Point (−5 ,5))

s e l f . shapeCode = (s e l f . shapeCode + 1) % 4

advance c y c l i c a l l y

s . move(event . getMouseLocation () . getX () , event .

getMouseLocation () . getY ())

s . s e t F i l l C o l o r (’ white ’)

event . g e tTr i gge r () . add (s)

add shape to the under l y ing canvas

s . addHandler (s e l f . hand l e r)

r e g i s t e r the ShapeHandler wi th the new shape

i f name == ’ ma in ’ :

paper = Canvas (400 , 300 , ’ white ’ , ’ C l i ck me ! ’)

paper . addHandler (NewShapeHandler ())

in s t a n t i a t e hand ler and r e g i s t e r a l l a t once

• A Dialog Box Class

• Here is another program; explain what it does.

Program : Dia log . py

Authors : Michael H. Goldwasser

David Let scher

#

#

from c s1g raph i c s import ∗

class Dialog (EventHandler) : # Note : hand les i t s e l f !

””” Provides a pop−up d i a l o g box o f f e r i n g a s e t o f cho i c e s . ”””

def i n i t (s e l f , prompt=’ Continue ? ’ , opt i ons =(’ Yes ’ , ’No ’) ,

t i t l e = ’ User re sponse needed ’ , width =300 , he ight

=100) :

”””Create a new Dia log in s tance but does not ye t d i s p l a y i t .

prompt the d i s p l a y ed s t r i n g (d e f a u l t ’ Continue ? ’)

120

op t i ons a sequence o f s t r i n g s , o f f e r e d as op t i ons (d e f a u l t

(’ Yes ’ , ’No ’))

t i t l e s t r i n g used f o r window t i t l e bar (d e f a u l t ’ User

response needed ’)

width width o f the pop−up window (d e f a u l t 300)

h e i g h t h e i g h t o f the pop−up window (d e f a u l t 100)

”””

EventHandler . i n i t (s e l f)

s e l f . popup = Canvas (width , height , ’ l i g h t g r a y ’ , t i t l e)

s e l f . popup . c l o s e () # hide , f o r now

s e l f . popup . add (Text (prompt , 14 , Point (width /2 ,20)))

xCoord = (width − 70∗(len (opt ions)−1)) /2

Center bu t t ons

for opt in opt ions :

b = Button (opt , Point (xCoord , height −30))

b . addHandler (s e l f) # we w i l l handle t h i s bu t ton ou r s e l v e s

s e l f . popup . add (b)

xCoord += 70

s e l f . monitor = Monitor ()

s e l f . r e spons e = None

def d i sp l ay (s e l f) :

”””Disp lay the d ia l og , wai t f o r a response and re turn the

answer . ”””

s e l f . r e spons e = None # c l e a r o ld responses

s e l f . popup .open () # make d i a l o g v i s i b l e

s e l f . monitor . wait () # wait u n t i l some but ton i s pres sed

s e l f . popup . c l o s e () # then c l o s e the popup window

return s e l f . r e spons e # and re turn the user ’ s response

def handle (s e l f , event) :

”””Check i f the event was a mouse c l i c k and have the d i a l o g

re turn . ”””

i f event . g e tDe s c r i p t i on () == ’ mouse c l i c k ’ :

s e l f . r e spons e = event . g e tTr i gge r () . getMessage ()

l a b e l o f chosen opt ion

s e l f . monitor . r e l e a s e ()

ready to end d i a l o g

121

i f name == ’ ma in ’ :

survey = Dialog (’How would you ra t e t h i s i n t e r f a c e ? ’ ,

(’ good ’ , ’ so−so ’ , ’ poor ’) , ’ User Survey ’)

answer = survey . d i sp l ay () # wai t s f o r user response

i f answer != ’ good ’ :

print ”Let ’ s s ee you do b e t t e r (s ee e x e r c i s e s) ”

• A Stopwatch Widget

• Explain what the following program does.

Program : Stopwatch . py

Authors : Michael H. Goldwasser

David Let scher

#

#

from c s1g raph i c s import ∗

class Stopwatch (Layer , EventHandler) :

”””Disp lay a stopwatch wi th s t a r t , stop , and r e s e t bu t t ons . ”””

def i n i t (s e l f) :

”””Create a new Stopwatch ins tance . ”””

Layer . i n i t (s e l f)

EventHandler . i n i t (s e l f)

border = Rectangle (200 ,100)

border . s e t F i l l C o l o r (’ white ’)

border . setDepth (52)

s e l f . d i s p l a y = Text (’ 0 :00 ’ , 36 , Point (0 ,−20))

s e l f . s t a r t = Square (40 , Point (−60 ,25))

s e l f . s t op = Square (40 , Point (0 ,25))

s e l f . r e s e t = Square (40 , Point (60 ,25))

buttons = [s e l f . s t a r t , s e l f . s top , s e l f . r e s e t]

for b in buttons :

b . s e t F i l l C o l o r (’ l i g h t g r a y ’)

b . setDepth (51) # in f r on t o f border , but behind icons

122

s e l f . s t a r t I c o n = Polygon (Point (−70 ,15) , Point (−70 ,35) , Point

(−50 ,25))

s e l f . s t a r t I c o n . s e t F i l l C o l o r (’ b lack ’)

s e l f . s t op I con = Square (20 , Point (0 , 25))

s e l f . s t op I con . s e t F i l l C o l o r (’ b lack ’)

s e l f . r e s e t I c o n = Text (’ 00 ’ , 24 , Point (60 ,25))

buttons . extend ([s e l f . s t a r t I c o n , s e l f . s topIcon , s e l f .

r e s e t I c o n])

for obj in buttons + [s e l f . d i sp l ay , border] :

s e l f . add (obj) # add to the l a y e r

s e l f . c l o c k = 0 # measured in seconds

s e l f . t imer = Timer (1 , True)

for a c t i v e in [s e l f . t imer] + buttons :

a c t i v e . addHandler (s e l f) # we w i l l handle a l l such even t s

def getTime (s e l f) :

”””Convert the c l o c k ’ s time to a s t r i n g wi th minutes and

seconds . ”””

min = str (s e l f . c l o c k // 60)

s ec = str (s e l f . c l o c k % 60)

i f len (s e c) == 1 :

sec = ’ 0 ’+sec # pad with l e ad in g zero

return min + ’ : ’ + sec

def handle (s e l f , event) :

”””Deal wi th each o f the p o s s i b l e even t s .

The p o s s i b i l i t i e s are t imer even t s f o r advancing the c lock ,

and mouse c l i c k s on one o f the bu t t ons .

”””

i f event . g e tDe s c r i p t i on () == ’ t imer ’ :

s e l f . c l o c k += 1

s e l f . d i s p l a y . setMessage (s e l f . getTime ())

e l i f event . g e tDe s c r i p t i on () == ’ mouse c l i c k ’ :

i f event . g e tTr i gge r () in (s e l f . s t a r t , s e l f . s t a r t I c o n) :

s e l f . t imer . s t a r t ()

e l i f event . g e tTr i gge r () in (s e l f . s top , s e l f . s t op I con) :

s e l f . t imer . stop ()

else : # must have been s e l f . r e s e t or s e l f . r e s e t I c on

123

s e l f . c l o c k = 0

s e l f . d i s p l a y . setMessage (s e l f . getTime ())

i f name == ’ ma in ’ :

paper = Canvas (400 ,400)

c l o ck = Stopwatch ()

paper . add (c l o ck)

c l o ck . move (200 ,200)

18. Network Programming

• A Network Primer

• Every computer has an IP (Internet Protocol) address. It is a numerical label assigned to

each device connected to a computer network that uses the Internet Protocol for communi-

cation.

• In IPv4 (Internet Protocol version 4), an IP address consists of 4 numbers separated by

dots. Each of these 4 numbers is a number from 0 to 255. In other words, in IPv4, an IP

address takes up 4 bytes (= 32 bits).

• IPv6 is under deployment now, and it uses128 bits.

• To find your computer’s Public IP address, simple google search.

• To find your computer’s Private IP address, open your command prompt (windows) or

terminal (mac) and type ipconfig (windows) or ifconfig (mac). Hidden among all those lines

is the Private IP address for your computer.

• For a mac, there is another way of finding your computer’s private IP address. Another way

is to go to System Preferences –> Network –> Wi-Fi (or TCP/IP) to find IP number.

• The string of characters we type to go to a website is known as URL (uniform resource

locator). For example, http://www.prenhall.com/goldwasser

• The substring www.prenhall.com is termed a host name and symbolizes a machine some-

where on the network.

• Behind the scene, network connections are established using a number known as an IP

address, example, 168.146.73.101. To translate a host name to its underlying IP address,

your computer will send a query to a special computer on the internet known as a domain

name server (DNS).

• To find the IP address of prenhall.com, go to your command prompt or terminal and type

ping prenhall.com. You will find the static IP address of the host name. You will need to

stop the repeated pings by CTRL-C.

• When you ping prenhall.com you will see the IP address 168.146.73.101. When you ping

google.com you will see the IP address 172.217.12.174.

• Open a browser and type in these IP addresses to open the respective addresses.

• Consider the web-address

http://www.bcc.cuny.edu/academics/academic-programs/

The /academics/academic-programs/ portion is a path to a particular information on

bcc.cuny.edu server.

• The http portion of the URL denotes a particular network protocol that will be used for

the transmission of information. In this case, the HyperText Transfer Protocol.

• Since networks are used to transmit information, the sender and receiver must have an

agreement as to the particular format that will be used.

• Because so many different protocols exist, a machine will often execute different software

depending upon the data format being used.

124

125

• To help quickly segment incoming network traffic according to the protocol, each network

connection to a remote machine must be designated at a specific port. To find port num-

bers, go to command-prompt or terminal and type netstat -a -b -n. As long as you have

administrative authority, you will see various ports on your computer.

• A computer port is a type of electronic, software- or programming-related docking point

through which information flows from a program on your computer or to your computer

from the Internet or another computer in a network. A network is a series of computers

that are physically or electronically linked.

• In computer terms, a computer or a program connects to somewhere or something else on

the Internet via a port. Port numbers and the user’s IP address combine into the ”who does

what” information kept by every Internet Service Provider.

• A port is a number ranging from 0 to 65535 (16 bits). There are established conventions for

using certain port numbers for certain types of activity.

• For example, queries to a web server are typically sent through port 80, and so a machine

might automatically handle network traffic from that port with software designated for http

activity. For https, the port number is 443.

• For instance, go to your web-browser and type in google.com:80 or google.com:443. Also try

google.com:20

• To find some of the common port numbers, visit

https://www.webopedia.com/quick ref/portnumbers.asp

• A network socket

• To manage the use of a specific network connection, programmers rely upon an abstraction

known as a socket. A socket is one endpoint of a two-way communication link between two

programs running on the network.

• A socket is the combination of an IP address plus port. For example, if you are looking

at the Google website, then there is a connection between your computer and the Google

server. Your computer’s IP number+port is the socket at your end. Google’s IP number

and port is the socket at the other end.

• For a connection between two machines, a separate socket is maintained at each end, used

to track the incoming and outgoing data for that machine.

• As a programmer, the socket serves as the interface for sending or receiving data from the

opposite machine. In Python, this is modeled using a socket class which is imported from

the socket module.

from socket import socke t

s = socket () #This command c r e a t e s a socket .

• To open a network connection to a remote host, we must specify both the host address and

the network port number:

s . connect ((’www. p r enha l l . com ’ , 80))

• This class supports a variety of behaviors. Some are summarized here:

126

• Here are some more socket commands:

• socket.bind(host, port) This binds the socket with the host (IP address) and the port. Note,

bind() is different from connect().

• bind() is called assigning a name to a socket. It associates the socket with its local address.

In other words, the server side binds, so that clients can use this address to connect to server.

• connect() is used to connect to a remote (server) address. In other words, connect() is on

the client side.

• socket.listen() The server is listening whether any data has been received.

• The send() method is used to transmit data to the remote host. The parameter is a string

to be transmitted.

• The recv() method is used receive data from the remote host and returns a string of char-

acters. Unlike reading from a file, the recv() method requires a parameter to designate the

maximum number of characters that we are willing to accept at the moment. It is not

possible to accept an unbounded amount of data at one time.

• The client connects to the server to make a request for information. An analogy is, an

applicant calls an employer for a job. Note, the employer does not even need to know the

existence of an applicant. Likewise, the server does not need to know even the existence of

a client. But the client needs to know the existence, and the address of the server.

• The client and the server have their own steps in establishing their own sockets.

• On the client side, the following steps are needed:

1. Create a socket with the socket() method;

2. Connect the socket to the address of the server using the connect() method;

3. Send and receive data typically using write() and read() methods.

• On the server side, the following steps are needed:

1. Create a socket with the socket() method;

2. Bind the socket to an address using the bind() method.

3. Listen for connections with the listen() method;

127

4. Accept a connection with the accept() method. Note, this call typically blocks until a

client connects with the server.

5. Send and receive data. The accept() method extracts the first connection request on

the queue of pending connections for the listening socket, creates a new connected socket,

and returns a new file descriptor referring to that socket. Once you have that new file

descriptor, you can use recv() to receive data from the client on it.

• When a call to recv() is made, there are four possible responses.

• First response: The call returns a string of the indicated length. There may exist additional

data sent through the network, yet not returned by this call due to the specified limit. Such

further data is buffered by the socket instance and returned by a subsequent call to recv().

• Second response: The call returns less data than the specified maximum, presumably because

no further data has been sent by the remote host.

• Third response: No additional data is available. Rather than return empty handed, this

call waits indefinitely for more data to be received through the network. This may be

problematic if the remote host has no intention of sending data.

• Fourth response: The call returns an empty string. This indicates that the connection has

been closed either by the remote host or a network disruption, so there is no reason to

continue waiting.

• We can terminate a network connection from our end by invoking the close() method upon

the socket. Once we have closed a connection, any subsequent call to send() or recv() will

result in an error.

128

• Writing a Basic Client

• The two most common models for network communication are: client-server model and

peer-to-peer (P2P) model.

• In a client-server model the machine acting as a server waits for a client to initiate contact.

For example, a web server waits for someone to make an explicit request to receive content

from that website.

• The protocols used for the client-server module involves the client sending a request and the

server sending a response to that request. The software for controlling a client is usually

different from the software for controlling a server.

• In a peer-to-peer network, two connected machines have more symmetric capabilities and

thus each run the same software.

• Peer-to-peer software is often implemented by combining the separate capabilities seen in

client software and server software.

• Fetching the Time and Date

• The National Institute of Science and Technology (NIST) runs servers that, when queried,

report the current time.

• These servers are connected to atomic clocks so their time is precise (although the time

when it is received may not be precise due to network delay).

• Time servers support a simple protocol on port 13 known as daytime.

• Whenever a client opens a connection to a time server, the server immediately returns a

string that contains the time and date information. The client need not even send an

explicit request; the mere act of opening a connection implies the client’s desire to know the

time.

• Try the following:

from socket import socke t #import ing a the socke t c l a s s

connect ion = socket () #i n s t a n t i a t e an in s t ance o f the socket c l a s s

connect ion . connect ((’ time . n i s t . gov ’ , 13))

#e s t a b l i s h a connect ion to one o f NIST ’ s s e r v e r s

p r i n t (connect ion . recv (1024))

#the s e r v e r sends a formatted s t r i n g which

#we r e t r i e v e and pr in t ;

#the value 1024 i s the maximum number o f bytes

#o f data we are w i l l i n g to r e c e i v e

• You should obtain a string which resembles ‘\n58500 19-01-17 11:35:00 00 0 0 710.3 UTC(NIST)

* \n’

• Here, UTC stands for Universal Time Coordinated (formerly known GMT – Greenwich

Mean Time).

• Here is another way of printing:

from socket import socke t

connect ion = socket ()

connect ion . connect ((’ time . n i s t . gov ’ , 13))

129

f i e l d s = connect ion . recv (1 0 2 4) . s p l i t ()

date = f i e l d s [1] . decode ()

time = f i e l d s [2] . decode ()

p r i n t (’ Date (YY − MM − DD) i s %s , and time i s %s (UTC) ’ %(date , time))

• Downloading a Web Page

• We now develop a client that downloads and saves a web page. After the connection is

made, the client must explicitly send a request to the server for the desired web page.

• Note that data received (or sent) is in ’UTF-8’ code. For efficient storage of strings, the

sequence of unicode points are stored into set of bytes. This is encoding. For example, try

the following on your shell:

a = ’ This i s a s t r i n g . We want to encode i t . ’

a . enc lode (’ ut f −8 ’) #see the output .

a . encode (’ ut f −16 ’) #now see the output .

a . encode (’ ut f −32 ’) #what does t h i s look l i k e ?

• By default, the encode() method returns ’utf-8’ encoded version of the string.

• For more on encoding visit

https://docs.python.org/3/library/codecs.html#standard-encodings

• Likewise, when we receive data, it is encoded. Therefore, we must decode that data.

• Here is a complete program to download a single web page and save the contents (but not

the header) to a file. Try the program with the website

’http://fsw01.bcc.cuny.edu/mathdepartment/Courses/Math/MTH23/math23.htm’

Program : web c l i e n t . py

Authors : Michael H. Goldwasser

David Let scher

#

This example i s d i s cu s s ed in Chapter 16 o f the book

Object−Oriented Programming in Python

#

from socket import socket

#Try : h t t p ://www. bcc . cuny . edu/academics/academic−programs/

print (’ Enter the web page you want to download . ’)

print (’ Use the format http :// domain . name/page/ to /download ’)

u r l = input ()

s e r v e r = u r l . s p l i t (’ / ’) [2] # e . g . , domain . name

page = ’ / ’ + ’ / ’ . j o i n (u r l . s p l i t (’ / ’) [3 :]) # e . g . , /page/ to /

download

connect ion = socket ()

130

connect ion . connect ((s e rve r , 80))

connect ion . send (str . encode (’GET %s HTTP/1.0\ r\n\ r\n ’ %page))

#\ r s tands f o r CR (Carriage Return)

#\n s tands f o r LF (Line Feed)

#The r e que s t ’GET / index . html HTTP/1.0 ’ asks the

#se r v e r to send the index . html page us ing ve r s i on 1.0 o f HTTP

#pro t o co l .

raw = connect ion . recv (1024) . decode (’ ut f−8 ’)

read f i r s t b l o c k (header + some content)

sep = raw . index (’\ r\n\ r\n ’)

header = raw [: sep]

content = raw [sep +4:]

#Each l i n e o f th header i s terminated wi th ’\ r\n ’ and

#the en t i r e header w i l l not have any b lank l i n e s . But the

header

#ends wi th a b lank l i n e . So , \ r\n\ r\n cap tures t h i s end o f the

header .

outputF i l e = open(’ download . html ’ , ’w ’)

outputF i l e . wr i t e (content)

wr i t e out content we have seen thus f a r

while len (content) > 0 : # s t i l l more p o s s i b l e content . . .

content = connect ion . recv (1024) . decode (’ ut f−8 ’)

outputF i l e . wr i t e (content) #keep wr i t i n g to the ou t pu tF i l e

#Looks l i k e no content i s l e f t (t h a t i s , l en (content) = 0)

outputF i l e . c l o s e ()

connect ion . c l o s e ()

• Our program for downloading a webpage shows how low-level steps are executed when

retrieving a webpage from a server using the HTTP protocol.

• Note, this task is high level, and fairly common in practice. So, Python has a library (urllib)

which contains several tools for web processing.

• In particular, there is a function urlopen which takes a string parameter specifying a URL

and returns a file-like object from which we can read the downloaded contents. Moreover,

this function uses a more modern version of HTTP than 1.0 (presently on HTTP 3.0).

131

• Here is a high-level way of downloading a webpage:

from u r l l i b import r eque s t

p r i n t (’ Enter the webpage you want to download ’)

p r i n t (’ Use the format http :// domain . name/page / ’)

p r i n t (’ For example , http ://www. bcc . cuny . edu/ academics /academic−
programs / ’)

u r l = input ()

content = reques t . ur lopen (u r l)

contentSt r ing = content . read ()

outputFie = open (’ download . html ’ , ’w’)

p r i n t (contentStr ing , f i l e = outputF i l e)

outputF i l e . c l o s e ()

19. Basic Network Servers

• Writing a server is quite different from writing a client.

• A client typically establishes a connection, makes a request, and processes the response.

• Implementing a server at a low level consists of listening on a particular port for incoming

connections, creating a socket to manage each such connection, and then following the chosen

network protocol for communication with the client.

• Python provides a socketserver module with some convenient tools to help write a server.

• TCP stands for Transmission Control Protocol used for establishing connections on

the internet.

• The TCPServer class handles all the details of listening on a specified port for incoming

connections and creating a dedicated socket for each such connection.

• The precise interactions that should take place once a client has connected to the server

needs to be customized.

• For this, we provide a second class that will be used to handle each connection (event-driven

programming).

• We define a special-purpose class that inherits from the BaseRequestHandler class (also

imported from socketserver module).

• Every time a new connection is established by a client, a handle method is called.

• By the time the body of the handle method is executed, the TCPServer will have already

initialized a socket, identified as self.request, that can be used for communicating with the

client.

• Note that in this case, the the server’s socket uses the send method to send data from the

server to the client. Likewise, the recv method is used to retrieve data from the client to

the server.

• The port can be whatever number we choose (other than those reserved for special protocols).

But the client needs to reach out to the same port.

• The HandlerClass is the name of the customized handler class, as opposed to an instance

of that class.

• The method serve forever() tells the server to continue running so long as the Python

program is executing. We can terminate the server by interrupting the Python interpreter.

• Here is the echo server:

Program : echoserver . py

Authors : Michael H. Goldwasser

David Let scher

#

from s o c k e t s e r v e r import TCPServer , BaseRequestHandler

class EchoHandler (BaseRequestHandler) :

def handle (s e l f) :

’ ’ ’ This o v e r r i d e s the handle method o f the parent c l a s s . ’ ’ ’
132

133

message = s e l f . r eque s t . recv (1024)

#s e l f . r e que s t r e f e r en c e s the c o n t r o l l i n g soc ke t .

s e l f . r eque s t . send (message) #This i s the echo

may need to customize l o c a l h o s t and por t f o r your machine

echoServer = TCPServer ((’ l o c a l h o s t ’ , 9000) , EchoHandler)

#Ther Server in s tance .

echoServer . s e r v e f o r e v e r ()

#This a c t i v a t e s the s e r v e r

• Once the server is up and running, test it. Start a second Python interpreter session on the

same machine (or even some other machine) and try the following:

from socket import socke t

echo = socket ()

echo . connect ((’ l o c a l h o s t ’ , 9000)) #i f you are on the same

machine . Else , f i n d the IP o f the machine with the s e r v e r .

echo . send (” This i s a t e s t ’ . encode ())

p r i n t (echo . recv (1024) . decode ())

• The return value is the number of characters that were successfully sent. This is provided

by the socket (not the echo server).

• If we try to echo a second message on this existing socket, we will find that the connection

has been closed.

• But as long as the echo server is executing, we could create a new socket and echo.

• Basic Web Server

• A web server is used to allow others access to content stored on the server’s machine.

• A web server is a computer system that processes requests via HTTP, the basic network

protocol used to distribute information on the World Wide Web.

• We present a code for a web server below.Note, our intent is to only give access to files or

directories located in the same place that we run our script. If we are unable to open the

file, we report this error using a standard HTTP protocol.

• Note, instead of the standard port number 80, we use the port number 8080.

• Word of Warning:

• Running our web server implementation on your computer for any extended length of time

is a security risk. Do not leave it running after trying it out.

Program : webserver . py

Authors : Michael H. Goldwasser

David Let scher

#

from s o c k e t s e r v e r import TCPServer , BaseRequestHandler

class WebHandler (BaseRequestHandler) :

134

def handle (s e l f) :

’ ’ ’ Overr id ing the handle method o f the base c l a s s . ’ ’ ’

command = s e l f . r eque s t . recv (1024) . decode (’ ut f−8 ’)

i f command [: 3] == ’GET’ :

pagename = command . s p l i t () [1] [1 :]

#Id e n t i f y the name o f the f i l e , and

remove l e ad in g ’/ ’ f o r f i l ename

try :

r e q u e s t e d F i l e = open(pagename , ’ r ’)

content = r e q u e s t e d F i l e . read ()

r e q u e s t e d F i l e . c l o s e ()

header = ’HTTP/1 .0 200 OK\ r\n ’

#standard header

s e l f . r eque s t . send (header . encode (’ ut f−8 ’))

s e l f . r eque s t . send (content . encode (’ ut f−8 ’))

except IOError : # could not open the f i l e

s e l f . r eque s t . send (’HTTP/1 .0 404 Not Found\ r\n\ r\n ’ . encode

())

webServer = TCPServer ((’ l o c a l h o s t ’ , 8080) , WebHandler)

webServer . s e r v e f o r e v e r ()

• On a separate interpreter, type the following:

from socket import socke t

s = socket ()

s . connect ((’ l o c a l h o s t ’ , 8080))

f i leName = ’ t r i a l . ext ’

message = ’GET /’+ fi leName

s . send (message . encode ())

p r i n t (s . recv (1024) . decode (’ ut f −8 ’))

• Note, if the file you asked for is larger than the limit of 1024 bytes, then you would have to

print the next chunks again and again.

135

• Network Chat Room

• We want to build a client-server model for a network chat room.

• Unlike the previous case, we need to specify our protocols. For instance, unlike the echo

server, here when a client connects to the server, they may stay connected for quite a while.

This is called a persistent connection.

• In a persistent connection, the server cannot be solely devoted to handling that connection

until it is closed, or else it will not be able to respond to other clients trying to connect.

• Here is a persistent echo server:

Program : pe r s i s t en tEchoServe r . py

#

from s o c k e t s e r v e r import TCPServer , BaseRequestHandler

class EchoHandler (BaseRequestHandler) :

def handle (s e l f) :

’ ’ ’ This o v e r r i d e s the handle method o f the parent c l a s s . ’ ’ ’

a c t i v e = True

while a c t i v e :

message = s e l f . r eque s t . recv (1024) . decode ()

#s e l f . r e que s t r e f e r en c e s the c o n t r o l l i n g sock e t .

i f message . lower () == ’ qu i t ’ :

s e l f . r eque s t . send ((”ECHO: Goodbye . ”) . encode ())

a c t i v e = False #Breaks the wh i l e loop

else :

s e l f . r eque s t . send ((”ECHO: ” + message) . encode ()) #This i s

the echo

s e l f . r eque s t . c l o s e () #c l o s e s our soc ke t a t the end o f the

wh i l e loop

may need to customize l o c a l h o s t and por t f o r your machine

echoServer = TCPServer ((’ l o c a l h o s t ’ , 9000) , EchoHandler)

#Ther Server in s tance .

echoServer . s e r v e f o r e v e r ()

#This a c t i v a t e s the s e r v e r

’ ’ ’

136

On the c l i e n t s ide , t r y the f o l l ow i n g on an i n t e r p r e t e r :

from socke t import s o c k e t

echo = socke t ()

echo . connect ((’ l o c a l h o s t ’ ,9000))

echo . send (’ t h i s i s a t e s t . ’ . encode ())

p r i n t (echo . recv (1024) . decode ())

echo . send (’ h e l l o . ’ . encode ())

p r i n t (echo . recv (1024) . decode ())

echo . send (’ q u i t ’ . encode ())

p r i n t (echo . recv (1024) . decode ())

echo . send (’ h e l l o . ’ . encode ())

p r i n t (echo . recv (1024) . decode ())

’ ’ ’

• Likewise, the client also needs to do two things: one, monitoring the keyboard in case the

user enters any commands, and two, monitoring the socket to listen for transmissions from

the server.

• So we will use multithreading. This allows several different pieces of software to execute

at the same time.

• Try the following:

from thread ing import Thread

from time import s l e e p

class MyThread(Thread) :

def run (s e l f) : #ove r r i d e s the run () method o f Thread c l a s s .

print (’ Second thread beg ins . ’)

s l e e p (5)

print (’ Second thread i s done . ’)

secondThread = MyThread ()

secondThread . s t a r t () #i n d i r e c t l y c a l l s the run () method .

print (’The program i s done . ’)

137

• Here is a flow of our multithreaded programme.

• On some systems, the first two of the output statements may be reversed as the two threads

compete with each other for time on the processor.

• Communication Protocol:

• We want to differentiate between messages that users send to each other and messages that

the client and server software send to each other.

• Users should be allowed to come and go or remain.

• Some messages are meant for everyone in the room, and some are private.

• The user interacts with the client software.

• There are four events for a particular user at the client side: the user may join the room,

the user may quit the room, the user may send a message to the entire room, or the user

may send a message to a specified individual.

• The server will inform a client whenever another individual joins or leaves the room, and

whenever messages have been entered that are supposed to be seen by this client’s particular

user.

• We differentiate between messages that are viewable because they were broadcast to the

whole room and messages that are viewable because they were privately sent to this user.

• Finally, the server will explicitly acknowledge when it receives word that a particular user

is quitting the chat room.

138

• The Server

• Most of the work involves the definition of a ChatHandler class that specializes

BaseRequestHandler (similar to what we did for our echo server and our web server).

• The primary difference is as follows: For the echo server and the web server, each connection

represented a single query, which is processed and dismissed. In the chat server, the handle

method is called whenever someone connects to the server and the routine continues for the

full duration of that user’s participation.

• That is, the handle routine consists of one big while loop that begins as soon as a client

connects. It remains active until finally receiving the QUIT command from the client or

until the connection fails (when recv returns an empty transmission).

• The socketLookup dictionary is maintained to map a screen name to the actual socket that

is being used to manage the connection to that user’s client.

• A new entry is added to the dictionary when a user initially joins the room, and the user’s

socket removed after the connection is closed – the socket self.request is closed and the

username key-value pair is popped from the dictionary.

• The broadcast function is a utility for transmitting network activity to each current client.

• There is a separate ChatHandler instance to manage each user’s connection to our server.

• The handle method will be running for a long time as one particular user remains in the

chat room.

• An important distinction between this implementation and our earlier servers is that we use

the ThreadingTCPServer class, not the TCPServer class. The threaded version of the

TCP server uses multithreading.

• Here is the ChatHandler :

from s o c k e t s e r v e r import ThreadingTCPServer , BaseRequestHandler

A g l o b a l d i c t i ona r y .

This a s s o c i a t e s usernames to s o c k e t s .

socketLookup = dict ()

Send the announcement to a l l u ser s .

def broadcas t (announcement) :

for connect ion in socketLookup . va lue s () :

connect ion . send (announcement . encode ())

139

class ChatHandler (BaseRequestHandler) :

def handle (s e l f) : #Overr id ing the handle method o f the base

c l a s s

We w i l l change t h i s as needed .

username = ’Unknown ’

a c t i v e = True

while a c t i v e :

Wait f o r something to happen .

t r ansmi s s i on = s e l f . r eque s t . recv (1024) . decode ()

i f t r ansmi s s i on :

The transmis s ion shou ld have the form ’ [COMMAND]

[DATA] ’

command = transmi s s i on . s p l i t () [0]

data = transmi s s i on [1+ len (command) :]

i f command == ’ADD’ :

username = data . s t r i p () #removes l e ad in g and

t r a i l i n g whi te space

socketLookup [username] = s e l f . r eque s t #

bu i l d i n g the d i c t i ona r y

broadcas t (’NEW %s\n ’%username)

e l i f command == ’MESSAGE’ :

broadcas t (’MESSAGE %s\n%s\n ’%(username , data)

)

e l i f command == ’PRIVATE ’ :

r e c i p i e n t = data . s p l i t (’\n ’) [0]

i f r e c i p i e n t in socketLookup :

content = data . s p l i t (’\n ’) [1]

socketLookup [r e c i p i e n t] . send ((’PRIVATE %s

\n%s\n ’%(username , content)) . encode ())

e l i f command == ’QUIT ’ :

a c t i v e = False

Te l l the user we saw the ’QUIT ’ .

s e l f . r eque s t . send (’GOODBYE\n ’ . encode ()) #

acknowledge

else :

I f the t ransmiss ion v a r i a b l e i s not se t , then

the soc k e t f a i l e d .

140

a c t i v e = False #socke t has f a i l e d

The ChatHandler i s no l onger a c t i v e .

Ei ther the user QUIT or the sock e t f a i l e d .

s e l f . r eque s t . c l o s e ()

socketLookup . pop (username)

broadcas t (’LEFT %s\n ’ % username)

Create a Threading TCP Server .

I t shou ld l i s t e n on t h i s machine (l o c a l h o s t) a t por t 9000.

Each incoming connect ion i s handled by a new ChatHandler .

myServer = ThreadingTCPServer ((’ l o c a l h o s t ’ , 9000) , ChatHandler)

Sta r t t h i s t h ing up . . .

myServer . s e r v e f o r e v e r ()

141

• The Client

• The client needs multithreading for doing two things simultaneously.

• One is that we want the user to type commands, while the other that the user should be

able to see messages from other users.

• Using input() will block our flow of control. Likewise, only using recv() (which is meant to

listen for activity on the network socket) will block our flow of control.

• Two threads share a single network socket identified as server.

• The IncomingThread class is devoted to monitoring incoming messages from that socket.

It executes a while loop that repeatedly waits for more information from the server. When

receiving network traffic, it uses knowledge of our protocol to interpret the meaning. The

symbol ==> helps demarcate the session.

• The primary thread begins by establishing the shared socket connection and registering the

user in the chat room using the ADD protocol. It is from the primary thread that the

secondary thread for monitoring incoming network activity is spawned.

• The remaining responsibility of the primary thread is to monitor input entered by the local

user via the keyboard, while the secondary thread continues to run independently.

• Note, the network protocol uses capitalized words, but the user is not required to.

• Here is the code for the ChatClient :

Program : c h a t c l i e n t . py

Authors : Michael H. Goldwasser

David Let scher

#

This example i s d i s cu s s ed in Chapter 16 o f the book

Object−Oriented Programming in Python

#

from socket import socket

from thread ing import Thread

class IncomingThread (Thread) :

def run (s e l f) :

s t i l l C h a t t i n g = True

while s t i l l C h a t t i n g : # wait f o r more

incoming data

t r ansmi s s i on = s e r v e r . recv (1024) . decode () # ’ se r v e r ’

w i l l be de f ined g l o b a l l y a t l i n e 27

l i n e s = t ransmi s s i on . s p l i t (’\n ’) [: −1]

i = 0

while i < len (l i n e s) :

command = l i n e s [i] . s p l i t () [0] # f i r s t keyword

param = l i n e s [i] [len (command) +1:] # remaining

in format ion

142

i f command == ’GOODBYE’ :

s t i l l C h a t t i n g = False

e l i f command == ’NEW’ :

print (’==> %s has j o in ed the chat room ’ % param)

e l i f command == ’LEFT ’ :

print (’==> %s has l e f t the chat room ’ % param)

e l i f command == ’MESSAGE’ :

i += 1 # need next l i n e f o r

content

print (’==> %s : %s ’ % (param , l i n e s [i]))

e l i f command == ’PRIVATE ’ :

i += 1 # need next l i n e f o r

content

print (’==> %s [p r i va t e] : %s ’ % (param , l i n e s [i]))

i += 1

i n s t r u c t i o n s = ”””

−−
Welcome to the chat room .

To qu i t , use syntax ,

q u i t

To send p r i v a t e message to ’ Joe ’ use syntax ,

p r i v a t e Joe : how are you?

To send message to everyone , use syntax ,

h i everyone !

−−
”””

s e r v e r = socket () # shared by

both threads

s e r v e r . connect ((’ l o c a l h o s t ’ , 9000)) # could be a

remote hos t

username = input (’What i s your name : ’) . s t r i p ()

s e r v e r . send ((’ADD %s\n ’ % username) . encode ())

incoming = IncomingThread ()

incoming . s t a r t ()

143

print (i n s t r u c t i o n s)

a c t i v e = True # main thread

f o r user input

while a c t i v e :

message = input () # wait f o r more

user input

i f message . s t r i p () :

i f message . r s t r i p () . lower () == ’ qu i t ’ :

s e r v e r . send (’QUIT\n ’ . encode ())

a c t i v e = False

e l i f message . s p l i t () [0] . lower () == ’ p r i v a t e ’ :

co lon = message . index (’ : ’)

f r i e n d = message [7 : co lon] . s t r i p ()

s e r v e r . send ((’PRIVATE %s\n%s\n ’ % (f r i end , message [1+ co lon :

])) . encode ())

else :

s e r v e r . send ((’MESSAGE ’ + message) . encode ())

144

• End of the semester does not mean end of learning

• Go through the website of Carnegie Mellon’s website for their introductory course in Python.

https://www.cs.cmu.edu/∼112/schedule.html

• Go through the following website: https://introcs.cs.princeton.edu/python/home/

• Here is Google’s Python class: https://developers.google.com/edu/python/

• A good interactive book: http://interactivepython.org/courselib/static/thinkcspy/index.html

• Another useful book: https://books.trinket.io/pfe/

• There are several excellent websites which train applicants for interviews for industry.

http://www.hackerrank.com

http://www.leetcode.com

Appendix 1: TKinter

• TK stands for “Tool kit”.

• The TKinter module (short for “TK interface”) is the standard Python interface to the

TK GUI toolkit from Scriptics (formerly developed by Sun Labs).

• First step is to create a window and a canvas inside that window.

• To create a window, try the following:

#Clo se l y f o l l o w s

#h t t p s ://www. cs . cmu . edu/˜112/ index . html

#Some TKinter codes

###

#createWindow . py

from t k i n t e r import ∗

root = Tk() #Creates a window

###

#hel loWor ld1 . py

from t k i n t e r import ∗

root = Tk()

w = Label (root , t ex t = ”Hel lo , World ! ”)

#Creates a Labe l w idge t

#A Labe l widge t can d i s p l a y t e x t

#or o ther images .

w. pack () #Te l l s the window to pack

#the widge t w i th in i t .

root . mainloop ()

#Without t h i s we cannot draw in to

#the canvas . This w i l l a l s o

#turn on even t s (keyboards e t c .)

#App l i ca t i on window w i l l n o t appear

#be f o r e you enter the main loop .

print (”Bye . ”)

##
145

146

#canvas1 . py

from t k i n t e r import ∗

def draw (canvas , width , he ight) :

pass # rep l a c e wi th your drawing code !

def runDrawing (width=300 , he ight=300) :

root = Tk()

canvas = Canvas (root , width=width , he ight=he ight)

canvas . pack ()#Te l l s the window to pack

#the canvas w i th in i t .

draw (canvas , width , he ight)

root . mainloop ()

print (”Bye ! ”)

runDrawing (500 , 500)

##

#he l l o 2 . py

from t k i n t e r import ∗

def draw (canvas , width , he ight) :

canvas . c r e a t e t e x t (200 , 100 , t ex t=”Hel lo , World ! ” ,

f i l l =” purple ” , f ont=”He lve t i c a 26 bold

unde r l i n e ”)

def runDrawing (width=300 , he ight=300) :

root = Tk()

canvas = Canvas (root , width=width , he ight=he ight)

canvas . pack ()

draw (canvas , width , he ight)

root . mainloop ()

print (”Bye ! ”)

runDrawing (500 , 500)

##

#moreCanvas1 . py

147

def draw (canvas , width , he ight) :

canvas . c r e a t e t e x t (200 , 100 , t ex t=”Hel lo , World ! ” ,

f i l l =” purple ” , f ont=”He lve t i c a 26 bold

unde r l i n e ”)

canvas . c r e a t e t e x t (200 , 100 , t ex t=” I t i s a b e au t i f u l day . ” ,

anchor = SW,

f i l l =” purple ” , f ont=”He lve t i c a 26 bold

unde r l i n e ”)

#Try var ious anchors : SE, NE, NW, N, E, W, S

canvas . c r e a t e r e c t a n g l e (10 ,20 , 150 ,200 , f i l l = ’ green ’)

##

#moreCanvas2 . py

def draw (canvas , width , he ight) :

canvas . c r e a t e r e c t a n g l e (10 ,20 , 150 ,200 , f i l l = ’ green ’)

canvas . c r e a t e r e c t a n g l e (40 ,70 , 190 ,250 , f i l l = ’ orange ’)

##

#moreCanvas3 . py

def draw (canvas , width , he ight) :

canvas . c r e a t e r e c t a n g l e (40 ,70 , 190 ,250 , f i l l = ’ orange ’)

canvas . c r e a t e r e c t a n g l e (10 ,20 , 150 ,200 , f i l l = ’ green ’)

##

#moreCanvas4 . py

def draw (canvas , width , he ight) :

margin = 10

canvas . c r e a t e r e c t a n g l e (margin , margin , width−margin , height−
margin , f i l l = ’ orange ’ , width=5)

canvas . c r e a t e r e c t a n g l e (10 ,20 , 150 ,200 , f i l l = ’ green ’ , width

=5)

#How would you change the green r e c t an g l e to f i t i t in

the cen te r ?

148

##

#RGB s t r i n g (i n t e g e r va l u e s a l l owed from 0 to 255)

”#%02x%02x%02x” % (255 , 0 ,0) #Red co l o r

”#%02x%02x%02x” % (0 ,255 ,0) #Green co l o r

”#%02x%02x%02x” % (0 ,0 , 255) #Blue co l o r

”#%02x%02x%02x” % (125 ,49 ,32) #Some co l o r

#Look f o r more RGB combinat ions to f i nd c o l o r s

##

#moreCanvas5 . py

def draw (canvas , width , he ight) :

margin = 10

canvas . c r e a t e r e c t a n g l e (margin , margin , width−margin , height−
margin , f i l l = ’ orange ’ , width=5)

canvas . c r e a t e r e c t a n g l e (10 ,20 , 150 ,200 , f i l l = ’ green ’ , width

=5)

canvas . c r e a t e o v a l (10 ,20 ,150 ,200 , f i l l = ’ pink ’)

#Or a l s o use t u p l e s f o r po in t s :

#canvas . c r e a t e o v a l ((10 ,20) ,(150 ,200) , f i l l = ’ pink ’)

#How does one draw a c i r c l e then?

##

#moreCanvas6 . py

def draw (canvas , width , he ight) :

margin = 10

canvas . c r e a t e r e c t a n g l e (margin , margin , width−margin , height−
margin , f i l l = ’ orange ’ , width=5)

canvas . c r e a t e r e c t a n g l e (10 ,20 , 150 ,200 , f i l l = ’ green ’ , width

=5)

canvas . c r e a t e o v a l ((10 , 20) , (150 ,200) , f i l l = ’ pink ’)

canvas . c r e a t e l i n e (100 , 50 , 300 , 150 , f i l l =” red ” , width=5)

#This i s a l i n e from (100 ,50) to (300 ,150)

canvas . c r ea t e po lygon (100 ,50 ,150 ,80 ,300 ,30 ,200 ,10 , f i l l =”

ye l low ”)

#This i s a po lygon j o i n i n g (100 ,50) ,

(150 ,80) , (300 ,30) ,

#(200 ,10) and back to (100 ,50) .

149

#We cou ld a l s o use a l i s t o f t u p l e s to draw our polygon as

#canvas . c r ea t e po l y gon ([(100 ,50) , (150 ,80) ,(300 ,30) , (200 ,10)] ,

f i l l =”ye l l ow ”)

#Why do you th ink a l i s t o f po in t s i s convenient ? Think append

or pop .

##

#Drawing a c l o c k (CMU−−Fundamentals o f Programming)

#Understand what each l i n e does

import math

def draw (canvas , width , he ight) :

(cx , cy , r) = (width /2 , he ight /2 , min(width , he ight) /3)

canvas . c r e a t e o v a l (cx−r , cy−r , cx+r , cy+r , f i l l =” ye l low ”)

r ∗= 0.85 # make sma l l e r so time l a b e l s l i e i n s i d e c l o c k face

for hour in range (12) :

hourAngle = math . p i /2 − (2∗math . p i) ∗(hour /12)
hourX = cx + r ∗ math . cos (hourAngle)

hourY = cy − r ∗ math . s i n (hourAngle)

l a b e l = str (hour i f (hour > 0) else 12)

canvas . c r e a t e t e x t (hourX , hourY , t ext=labe l , f ont=”Ar ia l

16 bold ”)

##

#moreCanvas7 . py

import math

def draw (canvas , width , he ight) :

(cx , cy , r) = (width /2 , he ight /2 , min(width , he ight) /3)

canvas . c r e a t e o v a l (cx−r , cy−r , cx+r , cy+r , f i l l =” ye l low ”)

r ∗= 0.85 # make sma l l e r so time l a b e l s l i e i n s i d e c l o c k face

po in t s =[]

for hour in range (12) :

hourAngle = math . p i /2 − (2∗math . p i) ∗(hour /12)
hourX = cx + r ∗ math . cos (hourAngle)

hourY = cy − r ∗ math . s i n (hourAngle)

po in t s . append ((hourX , hourY))

canvas . c r ea t e po lygon (points , f i l l = ’ v i o l e t ’)

150

##

#moreCanvas8 . py

#To move canvas o b j e c t s

from t k i n t e r import ∗

def draw (canvas , width , he ight) :

r e c t 1 = canvas . c r e a t e r e c t a n g l e (200 ,300 , 280 , 380 , f i l l = ’

orange ’ , width=5)

r e c t 2 = canvas . c r e a t e r e c t a n g l e (10 ,20 , 150 ,200 , f i l l = ’ green ’

, width=5)

oval1 = canvas . c r e a t e o v a l (10 ,20 ,150 ,200 , f i l l = ’ pink ’)

canvas . move(rect1 , 100 ,10)

canvas .move(oval1 , 100 , 10)

##

#moreCanvas9 . py

#Use move and s l e e p in combination

from t k i n t e r import ∗
from time import s l e e p

def draw (canvas , width , he ight) :

ova l1 = canvas . c r e a t e o v a l (20 ,0 ,40 ,20 , f i l l = ’ pink ’)

timeDelay = .25

for i in range (48) :

s l e e p (timeDelay)

canvas .move(oval1 , 0 ,10)

canvas . update ()

##

#moreCanvas10 . py

#Tick ing c l o c k

from t k i n t e r import ∗
from time import s l e e p

import math

151

def draw (canvas , width , he ight) :

(cx , cy , r) = (width /2 , he ight /2 , min(width , he ight) /3)

canvas . c r e a t e o v a l (cx−r , cy−r , cx+r , cy+r , f i l l =” ye l low ”)

r ∗= 0.85 # make sma l l e r so time l a b e l s l i e i n s i d e c l o c k face

po in t s =[]

for hour in range (12) :

hourAngle = math . p i /2 − (2∗math . p i) ∗(hour /12)
hourX = cx + r ∗ math . cos (hourAngle)

hourY = cy − r ∗ math . s i n (hourAngle)

l a b e l = str (hour i f (hour > 0) else 12)

canvas . c r e a t e t e x t (hourX , hourY , t ext=labe l , f ont=”Ar ia l

16 bold ”)

po in t s . append ((hourX , hourY))

t i c k = canvas . c r e a t e l i n e ((cx , cy) , (cx , cy−r) , width=3)#The

need l e in the c l o c k

timeDelay=0.25

for p in po in t s :

s l e e p (timeDelay)

canvas . coords (t i ck , cx , cy , p [0] , p [1]) #Changes coord ina t e s

o f t i c k

canvas . update ()

s l e e p (timeDelay)

canvas . coords (t i ck , cx , cy , cx , cy−r) #See what happens i f you

don ’ t have t h i s

###############

#More Tkinter codes .

#C lo s e l y f o l l o w s : h t t p s :// e f f b o t . org / t k i n t e r b o o k

#Also check out :

#h t t p s ://www. python−course . eu/ p y t h on t k i n t e r . php

#For CSI32

152

from t k i n t e r import ∗
#You cou ld a l s o say ,

#import t k i n t e r

#and use t k i n t e r . method to work wi th .

#Or ,

#import t k i n t e r as t

#and then use t . method to work wi th .

##

#Code1

from t k i n t e r import ∗
def s ay h i () :

print (’ h i the re everyone ’)

root = Tk()

frame = Frame(root) #We have crea t ed a frame widge t .

#A frame i s a s imple conta iner .

frame . pack () #We pack to make the frame v i s i b l e

#Note , the pack () method re turns None .

#So , do not do the f o l l ow i n g : Frame(roo t) . pack () s ince t h i s

#would not g i v e you a r e f e r ence to the Frame you have crea t ed .

button = Button (frame , t ex t=”He l lo World ! ” , f g = ’ red ’ , command=

say h i)

#We crea t e a but ton widge t as a c h i l d to the frame

.

#I t i s l a b e l l e d ”He l l o World !”

#f g s tands f o r foreground (here i t i s red) .

#The but ton tak e s

button . pack (s i d e=LEFT)

#Now, the bu t ton has been packed .

#You cou ld have s imply said , bu t ton . pack ()

in t h i s case .

root . mainloop ()

#A frame i s a r e c t angu l a r reg ion on the screen .

153

#Frame widge t s are used to group o ther w idge t s i n t o complex

l a y ou t s .

##

#Code2

def s ay h i () :

print (’ h i the re everyone ’)

root = Tk()

frame = Frame(root)

frame . pack ()

button1 = Button (frame , t ex t=”He l lo World ! ” , f g = ’ red ’ , command=

say h i)

button1 . pack ()

#Try var ious pack ing p o s i t i o n s but ton1 . pack ()

but ton1 . pack (s i d e =) s i d e op t i ons are

#top (d e f a u l t) , bottom , r i gh t , l e f t

button2 = Button (frame , t ex t=’ Quit ’ , f g = ’ blue ’ , command=frame .

qu i t)

#Another bu t ton crea t ed . Not ice i t s command .

button2 . pack () #Try var ious pack ing p o s i t i o n s but ton . pack ()

but ton2 . pack (s i d e =)

root . mainloop ()

root . des t roy ()

#Some environments r e qu i r e t h i s command to de s t roy the

window

#Try wi thout the de s t roy command to see what happens .

##

#Code3

#Encapsu la t ion approach

#

from t k i n t e r import ∗

def s ay h i () :

print (’ h i the re everyone ’)

class App :

154

def i n i t (s e l f , master) :

frame = Frame(master)

frame . pack ()

s e l f . button1 = Button (

frame , t ex t=”QUIT” , f g=” red ” , command=frame . qu i t)

s e l f . button1 . pack (s i d e=LEFT)

s e l f . button2 = Button (frame , t ex t=”Hel lo , World” , command=

s e l f . s ay h i)

s e l f . button2 . pack (s i d e=LEFT)

def s ay h i (s e l f) :

print (” h i there , everyone ! ”)

root = Tk()

app = App(root)

root . mainloop ()

root . des t roy ()

#The Button widge t i s a s tandard widge t used to implement var ious

#kinds o f bu t t ons (t e x t , image) and you can a s s o c i a t e a

#func t i on or method wi th a but ton .

##

#Here i s how to we can s p e c i f y s i z e

#Try var ious combinat ions o f commenting be low .

from t k i n t e r import ∗

root = Tk()

#frame = Frame(root , h e i g h t =200, width=150)

frame = Frame(root)

#frame . pack propaga te (0) #don ’ t sh r ink

155

frame . pack ()

button1 = Button (frame , t ex t=”Welcome to my home .How are you?”)

#but ton1 = Button (frame , t e x t=”Welcome to my home .” , h e i g h t =2,

width=1)

#but ton1 . pack (f i l l = BOTH, expand =1)

button1 . pack ()

root . mainloop ()

###

#Yet another way o f us ing Labe l w idge t

#Make sure t ha t l o t u s . g i f i s in the f o l d e r you run t h i s code ,

#or use a path to reach the f o l d e r .

from t k i n t e r import ∗

root = Tk()

l o t u s = PhotoImage (f i l e=” l o tu s . g i f ”)

l a b e l = Label (root , image = l o tu s)

l a b e l . pack ()

###########

f l owe r = ’ ’ ’ Nelumbo nuc i f era , a l s o known as Indian l o tu s ,

sacred l o tu s , bean o f India , Egyptian bean or s imply l o tu s

,

i s one o f two ex tan t s p e c i e s o f aqua t i c p l an t in the

fami l y

Nelumbonaceae . I t i s o f t en c o l l o q u i a l l y c a l l e d a water

l i l y . ’ ’ ’

l a b e l 2 = Label (root , t ex t=f l owe r)

l a b e l 2 . pack (s i d e=”bottom”)

############

def s a y l i k e () :

print (” I l i k e l o t u s . ”)

l i k e = Button (root , t ex t=”Like ” , command=s a y l i k e)

l i k e . pack (s i d e=” l e f t ”)

156

l e ave = Button (root , t ex t=”Quit” , command=root . des t roy)

l eave . pack (s i d e=” r i gh t ”)

root . mainloop ()

#The Labe l w idge t i s used to d i s p l a y a t e x t or image .

##

#Another example

from t k i n t e r import ∗

root = Tk()

l o t u s = PhotoImage (f i l e=” l o tu s . g i f ”)

l a b e l = Label (root , image = l o tu s)

l a b e l . pack ()

def s a y l i k e () :

print (” I l i k e l o t u s . ”)

l i k e = Button (root , t ex t=”Like ” , command=s a y l i k e)

l i k e . pack (s i d e=” l e f t ”)

l e ave = Button (root , t ex t=”Quit” , command=root . des t roy)

l eave . pack (s i d e=” r i gh t ”)

canvas = Canvas (root , width = 200 , he ight = 200)

canvas . pack (s i d e=’ bottom ’)

canvas . c r e a t e r e c t a n g l e (30 ,50 ,100 ,100 , f i l l = ’ ye l low ’)

###########

f l owe r = ’ ’ ’ Nelumbo nuc i f era , a l s o known as Indian l o tu s ,

sacred l o tu s , bean o f India , Egyptian bean or s imply l o tu s

,

157

i s one o f two ex tan t s p e c i e s o f aqua t i c p l an t in the

fami l y

Nelumbonaceae . I t i s o f t en c o l l o q u i a l l y c a l l e d a water

l i l y . ’ ’ ’

l a b e l 2 = Label (root , t ex t=f l owe r)

l a b e l 2 . pack (s i d e=”bottom”)

############

root . mainloop ()

##

#The Message widge t

from t k i n t e r import ∗

root = Tk()

s imon gar funke l = ’ ’ ’ I ’ d ra the r be a sparrow than a sna i l ,\n
Yes I would , i f I could , I s u r e l y would . ’ ’ ’

song = Message (root , t ex t = s imon gar funke l)

song . c on f i g (bg=’ l i g h t b l u e ’ , f ont = (’ Ar i a l ’ , 50 , ’ i t a l i c ’))

song . pack ()

root . mainloop ()

#This widge t i s used f o r sho r t t e x t messages .

#Unl ike Label , here the f on t can be changed .

#Message can be mu l t i l i n e s .

##

#The Radio Button widge t

from t k i n t e r import ∗

root = Tk()

158

v=IntVar ()

ques t i on= ’ ’ ’Who i s the author o f ”War and Peace”? ’ ’ ’

qLabel = Label (root , t ex t=quest ion , j u s t i f y=’ l e f t ’ , padx=50)

qLabel . pack ()

cho i ce1=Radiobutton (root , t ex t=”Dickens ” , padx=50, v a r i a b l e=v ,

va lue=1)

cho i ce1 . pack (anchor=W)

cho i ce2=Radiobutton (root , t ex t=”Frost ” , padx=50, v a r i a b l e=v , va lue

=2)

cho i ce2 . pack (anchor=W)

cho i ce3=Radiobutton (root , t ex t=”Tolstoy ” , padx=50, v a r i a b l e=v ,

va lue=3)

cho i ce3 . pack (anchor=W)

def te l lAnswer () :

print (v . get ())

yourAnswer = Button (root , t ex t=”Your Answer” , command=te l lAnswer)

yourAnswer . pack (s i d e=”bottom”)

root . mainloop ()

#Radio but ton a l l ow s the user to choose e x a c t l y one o f a

#prede f ined s e t o f op t i ons .

##

#Entry widge t and Grid geometry

from t k i n t e r import ∗

def s h ow en t r y f i e l d s () :

print (” F i r s t : %s\nLast : %s ” % (e1 . get () , e2 . get ()))

master = Tk()

f i r s t = Label (master , t ex t=” F i r s t ”)

159

f i r s t . g r i d (row=0) #not ice , we are not pack ing .

#we are p l a c i n g f i r s t in a g r i d

second = Label (master , t ex t=”Second”)

second . g r id (row=1)

e1 = Entry (master) #This i s an entry widge t

e2 = Entry (master)

e1 . g r i d (row=0, column=1) #gr i d again . . .

e2 . g r i d (row=1, column=1)

qbutton = Button (master , t ex t=’ Quit ’ , command=master . qu i t)

#qbut ton . g r i d (row=3, column=0)

qbutton . g r i d (row=3, column=0, s t i c k y=W, pady=20)

sbutton = Button (master , t ex t=’Show ’ , command=show en t r y f i e l d s)

#sbu t ton . g r i d (row=3, column=1)

sbutton . g r i d (row=3, column=1, s t i c ky=W, pady=20)

#l o t u s = PhotoImage (f i l e =” l o t u s . g i f ”)

#l a b e l = Labe l (master , image = l o t u s)

#l a b e l . g r i d (row=0, column=2, columnspan=2, rowspan=2)

master . mainloop ()

master . des t roy ()

#Entry w idge t s a l l ow us to g e t input from the user in

#the form of a t e x t s t r i n g . The content g e t s s c r o l l e d i f

#the a v a i l a b l e d i s p l a y space i s not enough .

#The Grid a l l ow s us to put w idge t s in a 2−dimensiona l t a b l e .

##

#Events and Binds

from t k i n t e r import ∗

root = Tk()

160

def giveChar (event) :

print (”You pres sed ” , repr (event . char))

def giveCoords (event) :

frame . f o c u s s e t ()

#Keyboard even t s r e qu i r e focus to be

#sent to the widget , even i f you

#do not keep t rack o f the coord ina t e s .

print (”You c l i c k e d at ” , event . x , event . y)

frame = Frame(root , width=200 , he ight=200)

frame . bind (”<Key>” , giveChar)

#<Key> i s a s p e c i f i c event .

frame . bind (”<Button−1>” , giveCoords)

#<Button−1> i s a s p e c i f i c event .

frame . pack ()

root . mainloop ()

#Python prov ide s a mechanism to bind f unc t i on s and methods to

w idge t s .

#The syntax i s widge t . b ind (event , hand ler)

#To l earn more , see

#h t t p s ://www. python−course . eu/ t k i n t e r e v e n t s b i n d s . php

#Here i s b ind ing wi th a Canvas o b j e c t .

##

##

import t k i n t e r as tk

def giveCoords (event) :

canvas . f o c u s s e t ()

#Keyboard even t s r e qu i r e focus to be

#sent to the widget , even i f you

161

#do not keep t rack o f the coord ina t e s .

print (”You c l i c k e d at ” , event . x , event . y)

def giveChar (event) :

#canvas . f o c u s s e t ()

print (”You pres sed ” , repr (event . char))

root = tk .Tk()

canvas = tk . Canvas (root , width = 500 , he ight = 500)

canvas . bind (”<Button−1>” , giveCoords)

canvas . bind (”<Key>” , giveChar)

canvas . pack ()

root . mainloop ()

##

##

#Using c l a s s to c l i c k and type

from t k i n t e r import∗

class MyObj :

def i n i t (s e l f) :

s e l f . c l i c k e v e n t = None

def c a p t u r e c l i c k (s e l f , event) :

canvas . f o c u s s e t ()

s e l f . c l i c k e v e n t = (event . x , event . y)

def giveChar (s e l f , event) :

canvas . c r e a t e t e x t (s e l f . c l i c k e v e n t , t ex t= str (event . char)

)

162

root = Tk()

canvas = Canvas (root , width = 500 , he ight = 500)

obj = MyObj()

canvas . bind (”<Button−1>” , obj . c a p t u r e c l i c k)

canvas . bind (”<Key>” , obj . giveChar)

canvas . pack ()

root . mainloop ()

##

##

from t k i n t e r import Tk , Canvas

def ca l l ba ck (event) :

draw (event . x , event . y)

def draw (x , y) :

pa int . coords (c i r c l e , x−10, y−10, x+10, y+10)

def sayHi (event) :

pa int . c r e a t e t e x t (event . x , event . y , t ex t=”Hi”)

root = Tk()

pa int = Canvas (root)

pa int . bind (’<B1−Motion> ’ , c a l l b a ck)

#Try t h i s i n s t ead

#pa in t . b ind (’<Button−1>’, c a l l b a c k)

#Or , t r y t h i s i n s t ead

#pa in t . b ind (’<Motion> ’ , c a l l b a c k)

#Or

#pa in t . b ind (’<Button−1>’, sayHi)

#Or

#

163

paint . pack ()

c i r c l e = paint . c r e a t e o v a l (0 , 0 , 0 , 0)

root . mainloop ()

##

##

from t k i n t e r import ∗
root = Tk()

canvas = Canvas (root , width=400 , he ight=200)

canvas . pack ()

canvas . c r e a t e o v a l (10 , 10 , 110 , 60 , f i l l =” grey ”)

canvas . c r e a t e t e x t (60 , 35 , t ex t=”Oval”)

canvas . c r e a t e r e c t a n g l e (10 , 100 , 110 , 150 , o u t l i n e=”blue ”)

canvas . c r e a t e t e x t (60 , 125 , t ex t=”Rectangle ”)

canvas . c r e a t e l i n e (60 , 60 , 60 , 100 , width=3)

class MouseMover () :

def i n i t (s e l f) :

s e l f . item = 0 ;

s e l f . p r ev ious = (0 , 0)

def s e l e c t (s e l f , event) :

widget = event . widget # Get handle to canvas

Convert screen coord ina t e s to canvas coord ina t e s

xc = widget . canvasx (event . x) ;

yc = widget . canvasx (event . y)

s e l f . item = widget . f i n d c l o s e s t (xc , yc) [0] # ID fo r c l o s e s t

s e l f . p r ev ious = (xc , yc)

print ((xc , yc , s e l f . item))

def drag (s e l f , event) :

widget = event . widget

xc = widget . canvasx (event . x) ;

yc = widget . canvasx (event . y)

164

canvas .move(s e l f . item , xc−s e l f . p r ev ious [0] , yc−s e l f . p r ev ious
[1])

s e l f . p r ev ious = (xc , yc)

Get an ins tance o f the MouseMover o b j e c t

mm = MouseMover ()

Bind mouse even t s to methods (cou ld a l s o be in the cons t ruc t o r)

canvas . bind (”<Button−1>” , mm. s e l e c t)

canvas . bind (”<B1−Motion>” , mm. drag)

##

##

from t k i n t e r import ∗

def giveCoords (event) :

print (”You c l i c k e d at ” , event . x , event . y)

def draw (canvas , width , he ight) :

ova l = canvas . c r e a t e o v a l (10 ,20 ,150 ,200 , f i l l = ’ pink ’ , tags=’

ova l ’)

canvas . tag b ind (’ ova l ’ , ”<ButtonPress−1>” , giveCoords)

#<Button−1> i s a s p e c i f i c event .

def runDrawing (width=300 , he ight=300) :

root = Tk()

canvas = Canvas (root , width=width , he ight=he ight)

canvas . pack ()#Te l l s the window to pack

#the canvas w i th in i t .

draw (canvas , width , he ight)

root . mainloop ()

print (”Bye ! ”)

runDrawing (500 , 500)

165

##

##

#The module t t k makes a l l the w idge t s l ook good .

#Try the f o l l ow i n g

from t k i n t e r import ∗

window = Tk()

my labe l = ttk . Label (window , t ex t=”He l lo World ! ”)

my labe l . g r i d (row=1,column =1)

window . mainloop ()

##

##

#These are Messages to d i s p l a y in format ion to a user .

#This method re turns a s t r i n g which i s t y p i c a l l y ignored .

#There are t h r ee t ype s o f messages .

#Try each one , one a f t e r the o ther . See what happens i f you

#t ry them a l l a t once .

from t k i n t e r import messagebox

messagebox . showinfo (” In format ion ” , ”We are in BCC now . ”)

messagebox . showinfo (”Error ” , ”This i s an e r r o r . Try again . ”)

messagebox . showwarning (”Warning” , ”Water i s hot . Don ’ t touch . ”)

##

##

#Here are some s imple yes /no type que s t i on s

#The re turn va l u e s are Boolean . I f ” cance l ” i s an opt ion and the

#user choses ” cance l ” button , then None i s re turned .

166

from t k i n t e r import messagebox

answer = messagebox . askokcance l (”Question ” , ”Do you want to open

t h i s f i l e ?”)

answer = messagebox . a s k r e t r y c an c e l (”Question ” , ”Do you want to t ry

that again ?”)

answer = messagebox . askyesno (”Question ” , ”Do you l i k e Python?”)

answer = messagebox . askyesnocance l (”Question ” , ”Continue p lay ing ?”

)

##

##

#This i s a s imple d i a l o g o b j e c t which i s meant

#to ask the user f o r a s i n g l e data value , e i t h e r a

#s t r in g , in t e ge r , or f l o a t i n g po in t va lue .

#I f the user h i t s ”Cancel ” , then None i s re turned .

import t k i n t e r as tk

from t k i n t e r import s imp l ed i a l og

appl i cat ion window = tk .Tk()

answer = s imp l ed i a l og . a s k s t r i n g (” Input ” , ”What i s your f i r s t name?

” ,

parent=appl i cat ion window)

i f answer i s not None :

print (”Your f i r s t name i s ” , answer)

else :

print (”You don ’ t have a f i r s t name?”)

answer = s imp l ed i a l og . a s k i n t e g e r (” Input ” , ”What i s your age ?” ,

parent=appl icat ion window ,

minvalue=0, maxvalue=100)

i f answer i s not None :

print (”Your age i s ” , answer)

else :

print (”You don ’ t have an age ?”)

answer = s imp l ed i a l og . a s k f l o a t (” Input ” , ”What i s your s a l a r y ?” ,

parent=appl icat ion window ,

167

minvalue =0.0 , maxvalue=100000.00)

i f answer i s not None :

print (”Your s a l a r y i s ” , answer)

else :

print (”You don ’ t have a s a l a r y ?”)

##

##

’ ’ ’

Widgets and t h e i r Purposes

t k . Button , t t k . Button Execute a s p e c i f i c t a s k ; a do t h i s now

command .

t k .Menu Implements t o p l e v e l , pul ldown , and popup menus .

t t k . Menubutton Disp lays popup or pul ldown menu items when

a c t i v a t e d .

t k . OptionMenu Creates a popup menu , and a but ton to d i s p l a y i t .

t k . Entry , t t k . Entry Enter one l i n e o f t e x t .

t k . Text Disp lay and e d i t format ted t e x t , p o s s i b l y wi th mu l t i p l e

l i n e s .

t k . Checkbutton , t t k . Checkbutton Set on−o f f , True−False s e l e c t i o n s .

t k . Radiobutton , t t k . Radiobutton Allow one−of−many s e l e c t i o n s .

t k . L i s t box Choose one or more a l t e r n a t i v e s from a l i s t .

t t k . Combobox Combines a t e x t f i e l d wi th a pop−down l i s t o f

v a l u e s .

t k . Scale , t t k . Sca l e S e l e c t a numerical va lue by moving a

s l i d e r a long a s c a l e .

There are t h r ee l a you t managers in the Tkinter module :

Layout Managers and t h e i r Descr ip t i on

p l ace You s p e c i f y the exac t s i z e and po s i t i o n o f each widge t .

Example : l a b e l . p l a ce (x=20,y=30) , or bu t ton . p l a ce (x=150,y

=50)

pack You s p e c i f y the s i z e and po s i t i o n o f each widge t r e l a t i v e

to each o ther .

Example : c lo seBut ton . pack (s i d e=RIGHT, padx=5, pady=5)

168

g r i d You p lace w idge t s in a c e l l o f a 2−dimensiona l t a b l e

de f ined by rows and columns .

Example : okButton . g r i d (row=1, column=2) .

’ ’ ’

###

###

###

import t k i n t e r as tk

from t k i n t e r import t tk

def main () :

Create the en t i r e GUI program

program = CounterProgram ()

Sta r t the GUI event loop

program . window . mainloop ()

class CounterProgram :

def i n i t (s e l f) :

s e l f . window = tk .Tk()

s e l f . my counter = None # Al l a t t r i b u t e s shou ld be

i n i t i a l i z e in i n i t

s e l f . c r e a t e w idg e t s ()

def c r e a t e w idg e t s (s e l f) :

s e l f . my counter = ttk . Label (s e l f . window , t ex t=”0”)

s e l f . my counter . g r i d (row=0, column=0)

increment button = ttk . Button (s e l f . window , t ex t=”Add 1 to

counter ”)

increment button . g r id (row=1, column=0)

increment button [’command ’] = s e l f . inc rement counter

169

qu i t but ton = ttk . Button (s e l f . window , t ext=”Quit”)

qu i t but ton . g r i d (row=2, column=0)

qu i t but ton [’command ’] = s e l f . window . des t roy

def inc rement counter (s e l f) :

s e l f . my counter [’ t ex t ’] = str (int (s e l f . my counter [’ t ex t ’])

+ 1)

i f name == ” main ” :

main ()

#You cou ld avoid us ing t t k . See be low .

###

###

###

from t k i n t e r import ∗

def main () :

program = CounterProgram ()

program . window . mainloop ()

class CounterProgram :

def i n i t (s e l f) :

s e l f . window = Tk()

s e l f . my counter=None

s e l f . c r e a t e w idg e t s ()

def c r e a t e w idg e t s (s e l f) :

s e l f . my counter=Label (s e l f . window , t ext=’ 0 ’)

s e l f . my counter . g r i d (row=0,column=0)

increment button = Button (s e l f . window , t ext=”Add 1” ,

command=s e l f . inc rement counter)

increment button . g r id (row=1,column=0)

170

qu i t but ton = Button (s e l f . window , t ext=”Quit” , command=s e l f

. window . des t roy)

qu i t but ton . g r i d (row=2,column=0)

def inc rement counter (s e l f) :

s e l f . my counter [’ t ex t ’] = str (int (s e l f . my counter [’ t ex t ’])

+ 1)

main ()

###

###

###

##

##

#Here are var ious r e l i e f s used f o r bu t t ons .

#Note , r e l i e f does not work on c e r t a i n OS.

from t k i n t e r import ∗
from t k i n t e r . t t k import ∗

root = Tk()

root width , r o o t h e i gh t = 200 , 500

root . geometry (”{}x{}” . format (root width , r o o t h e i gh t))

b1 = Button (root , t ex t=”FLAT” , r e l i e f=FLAT)

b2 = Button (root , t ex t=”RAISED” , r e l i e f=RAISED)

b3 = Button (root , t ex t=”SUNKEN” , r e l i e f=SUNKEN)

b4 = Button (root , t ex t=”GROOVE” , r e l i e f=GROOVE)

b5 = Button (root , t ex t=”RIDGE” , r e l i e f=RIDGE)

b1 . pack ()

171

b2 . pack ()

b3 . pack ()

b4 . pack ()

b5 . pack ()

root . mainloop ()

##

##

’ ’ ’ In what f o l l ow s , you w i l l encounter the f o l l ow i n g :

s t i c k y

When the widge t i s sma l l e r than the c e l l , s t i c k y i s used to

i n d i c a t e which s i d e s and

corners o f the c e l l the widge t s t i c k s to . The d i r e c t i o n i s de f ined

by compass

d i r e c t i o n s : N, E, S , W, NE, NW, SE, and SW and zero . These cou ld

be a s t r i n g concatenat ion ,

f o r example , NESW make the widge t take up the f u l l area o f the

c e l l .

’ ’ ’

import t k i n t e r as tk

from t k i n t e r import t tk

from t k i n t e r import f i l e d i a l o g

class Counter program () :

def i n i t (s e l f) :

s e l f . window = tk .Tk()

s e l f . window . t i t l e (” tk Examples”)

s e l f . c r e a t e w idg e t s ()

s e l f . r a d i o v a r i a b l e = tk . Str ingVar ()

s e l f . combobox value = tk . Str ingVar ()

def c r e a t e w idg e t s (s e l f) :

172

Create some room around a l l the i n t e r n a l frames

s e l f . window [’ padx ’] = 5

s e l f . window [’ pady ’] = 5

−
The Commands frame

cmd frame = t t k . LabelFrame (s e l f . window , t e x t=”Commands” ,

padx=5, pady=5, r e l i e f=t k .RIDGE)

cmd frame = ttk . LabelFrame (s e l f . window , t ext=”Commands” ,

r e l i e f=tk .RIDGE)

cmd frame . g r id (row=1, column=1, s t i c ky=tk .E + tk .W + tk .N

+ tk . S)

bu t t on l ab e l = ttk . Label (cmd frame , t ex t=” tk . Button”)

bu t t on l ab e l . g r i d (row=1, column=1, s t i c ky=tk .W, pady=3)

bu t t on l ab e l = ttk . Label (cmd frame , t ex t=” ttk . Button”)

bu t t on l ab e l . g r i d (row=2, column=1, s t i c ky=tk .W, pady=3)

menu label = ttk . Label (cmd frame , t ex t=”Menu (see examples

above) ”)

menu label . g r i d (row=3, column=1, columnspan=2, s t i c k y=tk .W

, pady=3)

my button = tk . Button (cmd frame , t ex t=”do something”)

my button . g r i d (row=1, column=2)

my button = ttk . Button (cmd frame , t ex t=”do something”)

my button . g r i d (row=2, column=2)

−
The Data entry frame

entry f rame = ttk . LabelFrame (s e l f . window , t ext=”Data Entry

” ,

r e l i e f=tk .RIDGE)

entry f rame . g r i d (row=2, column=1, s t i c k y=tk .E + tk .W + tk .

N + tk . S)

e n t r y l a b e l = ttk . Label (entry frame , t ex t=” ttk . Entry”)

e n t r y l a b e l . g r i d (row=1, column=1, s t i c ky=tk .W + tk .N)

173

t e x t l a b e l = ttk . Label (entry frame , t ex t=” tk . Text”)

t e x t l a b e l . g r i d (row=2, column=1, s t i c k y=tk .W + tk .N)

s c a l e l a b e l = ttk . Label (entry frame , t ex t=” tk . Sca l e ”)

s c a l e l a b e l . g r i d (row=4, column=1, s t i c k y=tk .W)

s c a l e l a b e l 2 = ttk . Label (entry frame , t ex t=” ttk . Sca l e ”)

s c a l e l a b e l 2 . g r i d (row=5, column=1, s t i c ky=tk .W)

my entry = ttk . Entry (entry frame , width=40)

my entry . g r i d (row=1, column=2, s t i c ky=tk .W, pady=3)

my entry . i n s e r t (tk .END, ”Test ”)

my text = tk . Text (entry frame , he ight=5, width=30)

my text . g r i d (row=2, column=2)

my text . i n s e r t (tk .END, ”An example o f multi−l i n e \ninput ”)

my spinbox = tk . Spinbox (entry frame , from =0, to=10, width

=5, j u s t i f y=tk .RIGHT)

my spinbox . g r i d (row=3, column=2, s t i c k y=tk .W, pady=3)

my scale = tk . Sca l e (entry frame , from =0, to=100 , o r i e n t=

tk .HORIZONTAL,

width=8, l ength=200)

my scale . g r i d (row=4, column=2, s t i c ky=tk .W)

my scale = ttk . Sca l e (entry frame , from =0, to=100 , o r i e n t=

tk .HORIZONTAL,

l ength=200)

my scale . g r i d (row=5, column=2, s t i c ky=tk .W)

−
The Choices frame

swi tch f rame = ttk . LabelFrame (s e l f . window , t ex t=”Choices ” ,

r e l i e f=tk .RIDGE, padding=6)

switch f rame . g r i d (row=2, column=2, padx=6, s t i c ky=tk .E +

tk .W + tk .N + tk . S)

174

checkbox labe l = ttk . Label (switch frame , t ex t=” ttk .

Checkbutton”)

checkbox labe l . g r i d (row=1, rowspan=3, column=1, s t i c ky=tk .

W + tk .N)

e n t r y l a b e l = ttk . Label (switch frame , t ex t=” ttk .

Radiobutton”)

e n t r y l a b e l . g r i d (row=4, rowspan=3, column=1, s t i c k y=tk .W +

tk .N)

checkbutton1 = ttk . Checkbutton (switch frame , t ex t=”On−o f f
switch 1”)

checkbutton1 . g r id (row=1, column=2)

checkbutton2 = ttk . Checkbutton (switch frame , t ex t=”On−o f f
switch 2”)

checkbutton2 . g r id (row=2, column=2)

checkbutton3 = ttk . Checkbutton (switch frame , t ex t=”On−o f f
switch 3”)

checkbutton3 . g r id (row=3, column=2)

s e l f . r a d i o v a r i a b l e = tk . Str ingVar ()

s e l f . r a d i o v a r i a b l e . set (”0”)

radiobutton1 = ttk . Radiobutton (switch frame , t ex t=”Choice

One o f three ” ,

v a r i ab l e=s e l f .

r ad i o va r i ab l e , va lue=”0

”)

radiobutton2 = ttk . Radiobutton (switch frame , t ex t=”Choice

Two o f three ” ,

v a r i ab l e=s e l f .

r ad i o va r i ab l e , va lue=”1

”)

radiobutton3 = ttk . Radiobutton (switch frame , t ex t=”Choice

Three o f th ree ” ,

v a r i ab l e=s e l f .

r ad i o va r i ab l e , va lue=”2

”)

radiobutton1 . g r i d (row=4, column=2, s t i c ky=tk .W)

radiobutton2 . g r i d (row=5, column=2, s t i c ky=tk .W)

175

rad iobutton3 . g r i d (row=6, column=2, s t i c ky=tk .W)

−
The Choosing from l i s t s frame

f r om l i s t f r ame = ttk . LabelFrame (s e l f . window , t ext=”

Choosing from a l i s t ” ,

r e l i e f=tk .RIDGE)

f r om l i s t f r ame . g r i d (row=1, column=2, s t i c k y=tk .E + tk .W +

tk .N + tk . S , padx=6)

l i s t b o x l a b e l = tk . Label (f r om l i s t f r ame , t ex t=” tk . Listbox ”

)

l i s t b o x l a b e l . g r i d (row=1, column=1, s t i c ky=tk .W + tk .N)

combobox label = tk . Label (f r om l i s t f r ame , t ex t=” ttk .

Combobox”)

combobox label . g r i d (row=2, column=1, s t i c ky=tk .W + tk .N)

my l i s tbox = tk . Listbox (f r om l i s t f r ame , he ight=4)

for item in [”one” , ”two” , ” three ” , ” f our ”] :

my l i s tbox . i n s e r t (tk .END, ”Choice ” + item)

my l i s tbox . g r i d (row=1, column=2)

s e l f . combobox value = tk . Str ingVar ()

my combobox = ttk . Combobox(f r oml i s t f r ame , he ight=4,

t e x t v a r i a b l e=s e l f . combobox value)

my combobox . g r i d (row=2, column=2)

my combobox [’ va lue s ’] = (”Choice one” , ”Choice two” , ”

Choice three ” , ”Choice f our ”)

my combobox . cur rent (0)

−
Menus

menubar = tk .Menu(s e l f . window)

f i l emenu = tk .Menu(menubar , t e a r o f f =0)

f i l emenu . add command(l a b e l=”Open” , command=f i l e d i a l o g .

askopenf i l ename)

f i l emenu . add command(l a b e l=”Save” , command=f i l e d i a l o g .

a sk savea s f i l ename)

176

f i l emenu . add separator ()

f i l emenu . add command(l a b e l=”Exit ” , command=s e l f . window .

qu i t)

menubar . add cascade (l a b e l=” F i l e ” , menu=f i l emenu)

s e l f . window . c on f i g (menu=menubar)

−
Quit bu t ton in the lower r i g h t corner

qu i t but ton = ttk . Button (s e l f . window , t ext=”Quit” , command

=s e l f . window . des t roy)

qu i t but ton . g r i d (row=1, column=3)

Create the en t i r e GUI program

program = Counter program ()

Sta r t the GUI event loop

program . window . mainloop ()

##

##

#Simple I n t e r e s t Ca l cu l a t o r

import t k i n t e r as tk

from t k i n t e r import t tk

class Counter program () :

def i n i t (s e l f) :

s e l f . window = tk .Tk()

s e l f . window . t i t l e (”Simple I n t e r e s t Ca l cu la to r ”)

s e l f . c r e a t e w idg e t s ()

def c r e a t e w idg e t s (s e l f) :

s e l f . window [’ padx ’] = 5

s e l f . window [’ pady ’] = 5

main frame = ttk . LabelFrame (s e l f . window , t ext=’ ’ , r e l i e f =

tk .RIDGE)

177

main frame . pack ()

p r i n c i p a l l a b e l = ttk . Label (main frame , t ex t = ” Pr i n c i p a l

i s $ ”)

p r i n c i p a l l a b e l . g r i d (row = 1 , column = 1)

s e l f . p r i n c i p a l e n t r y = ttk . Entry (main frame , width = 40)

s e l f . p r i n c i p a l e n t r y . g r i d (row = 1 , column = 2)

r a t e l a b e l = ttk . Label (main frame , t ex t = ”Annual Rate o f

I n t e r e s t in % i s ”)

r a t e l a b e l . g r i d (row = 2 , column = 1)

s e l f . r a t e en t r y = ttk . Entry (main frame , width = 40)

s e l f . r a t e en t r y . g r i d (row = 2 , column = 2)

numYears label = ttk . Label (main frame , t ex t = ”Number o f

year s i s ”)

numYears label . g r i d (row = 3 , column = 1)

s e l f . numYears entry = ttk . Entry (main frame , width = 40)

s e l f . numYears entry . g r i d (row = 3 , column = 2)

but ton ca l c = ttk . Button (main frame , t ex t = ”Simple

I n t e r e s t Ca l cu la to r ” , command = s e l f . i n t e r e s t)

bu t ton ca l c . g r i d (row=4,column = 1 , columnspan = 2)

i n f o rm l ab e l = ttk . Label (main frame , t ex t = ”Simple

I n t e r e s t earned i s $”)

i n f o rm l ab e l . g r i d (row=5, column =1)

s e l f . i n t e r e s t l a b e l = ttk . Label (main frame , t ex t =’ ’)

s e l f . i n t e r e s t l a b e l . g r i d (row=5,column =2)

def i n t e r e s t (s e l f) :

p = f loat (s e l f . p r i n c i p a l e n t r y . get ())

r = f loat (s e l f . r a t e en t r y . get ()) /100

t = f loat (s e l f . numYears entry . get ())

outputStr ing = ” {0 : 0 . 2 f }” . format (p∗ r∗ t)
s e l f . i n t e r e s t l a b e l [’ t ex t ’] = outputStr ing

178

Create the en t i r e GUI program

program = Counter program ()

Sta r t the GUI event loop

program . window . mainloop ()

Appendix 2: Review

(1) Draw an activity diagram for the following code, and write down its output:

x , y=3,2

whi l e (x+y)<18:

p r i n t (x , y)

x = x+3

y =y+1

(2) Draw a sequence diagram for the following code:

• Chad is an instance of the class LibraryClient.

• Chad adds fiction1 to his cart, by invoking the method chad.add(fiction1).

• The book fiction1 ’s availability is checked, by using the method fiction1.available()

which returns True value.

• Update chad.bookList by chad.updateBookList(nonfiction2).

• Chad adds nonfiction1 to his cart, by invoking the method chad.add(nonfiction1).

• The book nonfiction1 ’s availability is checked, by using the method nonfiction1.available()

which returns False value.

• Chad adds nonfiction2 to his cart, by invoking the method chad.add(nonfiction2).

• The book nonfiction2 ’s availability is checked, by using the method nonfiction2.available()

which returns True value.

• Update chad.bookList by chad.updateBookList(nonfiction2).

(3) Design the class, Card. Each instance of a card has the following attributes:

• a suit (Spade, Club, Heart, Diamond),

• a value (Ace, King, Queen, Jack, Two through Ten),

• accessor method getSuit,

• accessor method getValue,

• mutator method changeSuit which changes the suit of your card randomly, and

• mutator method changeValue which changes the value of your card randomly.

All the attributes are public. Draw a class diagram of your class, and write a code to

implement this class.

(4) Design the class, Cone. Each instance of the cone has the following attributes:

• baseRadius ;

• height ;

• accessor method getbaseRadius ;

• accessor method getHeight ;

• mutator method changeBaseRadius (r) which changes the base radius to r;

• mutator method changeHeight (h) which changes the height to h;

• method getSurfaceArea which returns the surface area of the cone

(SA = π · radius · (radius+
√
radius2 + height2));

• method getVolume which returns the volume of the cone (SA =
π · radius2 · height

3
).

(5) Chapter 1 Review from the textbook.
179

180

(6) Write a programme that asks the user to write date in the format dd/mm/yyyy and returns

Date-Month-Year. For instance, if the user enters 23/04/2019 then the programme should

return 23-April-2019.

(7) Write a programme that asks the user to provide a positive integer, and returns a string

where every even digit is replaced by * and every odd digit is replaced by an @. For instance,

the number 325348 should return ’@*@**’.

(8) Write an interactive programme which asks the user what presents they would like for their

birthday. Make sure that there is a way for the user to be done listing their wishes. Then

print out the user’s wish-list.

(9) Chapter 2 Review from the textbook.

(10) Chapter 3 Review from the textbook (Alternatively, go through your TKinter lectures notes).

(11) Write a programme that asks the user to enter a string. Now print the string in the form of

steps. For instance, if the user enters ”abcd”, the output should be

a

ab

abc

abcd

(12) The Euler number e is equal to the infinite series
∑∞

k=0

1

k!
. Write a function eApproximate(n)

which for each integer n ≥ 0 returns an approximation of e given by
∑n

k=0

1

k!
.

(13) The mathematical constant π is equal to the infinite series π = 4 ·
(

1− 1

3
+

1

5
− 1

7
+ · · ·

)
.

Write a function piApproximate(n) which returns an n-th approximation

4 ·
(

1− 1

3
+

1

5
− 1

7
+ · · · (−1)n

1

2n+ 1

)
.

(14) An integer in base 6 uses digits 0, 1, 2, 3, 4, 5. Write a function intNum(baseSix) which takes

in a string in base six, and returns its integer value. For instance, intNum(123) should return

51.

(15) An integer in base 16 uses digits 0, 1, 2, . . . , 9, A,B,C,D,E, F . Write a function intNum(baseSixteen)

which takes in a string in base sixteen, and returns its integer value. For instance, int-

Num(F1) should return 241.

(16) Chapter 4 Review from the textbook.

(17) Write the function kthDigit(n, k) that takes a possibly-negative int n and a non-negative int

k, and returns the kth digit of n, starting from 0, counting from the right. So kthDigit(789,

0) returns 9, kthDigit(789, 2) returns 7, kthDigit(789, 3) returns 0, and kthDigit(-789, 0)

returns 9. Use try-except approach to avoid inappropriate inputs.

(18) Write a programme to determine whether a positive integer is prime. Draw an activity

diagram to explain your programme.

(19) Write the function mostFrequentLetter(s) that takes a string s and returns the letter, in

capital form, that occurs the most frequently in it. Your test should be case-insensitive, to

”A” and ”a” are the same. If there is a tie, you should return a string with all the most

frequent letters in alphabetic order. For example, mostFrequentLetter(’This is a beautiful

day’) must return ’AI’.

181

(20) Write the function subChars(s1,s2) which returns True if every character in string s1 is

also in string s2 at least once. Note, this function should be case-sensitive; for instance,

subChars(’a’, ’AA’) should return False. Further, if string s1 is the empty string, then

subChars(s1,s2) must return True. Use this function to write a function sameChars(s1,s2)

which returns True if every character in string s1 is also in string s2 at least once, and vice

versa.

(21) Chapter 5 Review from the textbook.

(22) Implement the class Complex numbers. Define the methods str , repr , add ,

sub , mul , truediv , and norm. All the instance variables are protected. Draw

its class diagram.

(23) Implement the class Modulo(n) numbers of integers modulo n. Make certain that n ≥ 1.

Define the methods str , repr , add , sub , mul and truediv . Note that

truediv could possibly return undefined results. All the instance variables are protected.

Draw its class diagram.

(24) Implement the class Polynomial(L) of polynomial in variable x with coefficients being

entries of the list L. If the list L is empty, then the polynomial is the zero polynomial.

Define the methods str , repr , add , sub , mul , derivative, and integrate. All

the instance variables are protected. Draw its class diagram.

(25) Chapter 6 Review from the textbook.

(26) A pallindromic prime is a prime number that is also a palindromic positive integer. Write

a function nthPallindromicPrime which returns the n-th pallindromic prime for a positive

intenger n. Note, nthPallindromicPrime(1) should return 2. The first few pallindromic

primes are:

2, 3, 5, 7, 11, 101, 131, . . .

Use try-except approach to deal with inappropriate input.

(27) Write a program which takes as input a positive integer n, and returns the n-th happy prime.

(28) Write a program which takes as input a list of positive integers, and prints out information

whether the number is one, or a composite number, or a prime number, or a pallindromic in-

teger, or a happy number, or a pallindromic prime, or a happy prime, or a happy pallindromic

prime.

(29) Chapter 7 Review in teh textbook.

(30) Write a programme which accepts a text file and prints the number of characters, number

of words, and number of lines in the file.

(31) Write a programme which accepts a text file with no punctuations, reads it, and writes a

new file with every line reversed. For instance, if the file accepted has a line ”Welcome to

my home”, the new file should have a line ”home my to Welcome”.

(32) Chapter 8 Review from the textbook.

182

(33) Draw a class diagram depicting inheritance in the following set-up:

(a) All the attributes are public.

(b) Base class is Polygon with attributes numSides (number of sides, an integer greater

than 2), isRegular (a boolean value, stating whether the polygon is regular), and side-

Length (a list of side-lengths). This class supports two methods, one getNumSides()

(an accessor), and the other perimeter() which represents the perimeter of the polygon.

(c) The child class is Triangle is obtained by setting numSides to 3, and this class augments

the Polygon class by a method getArea() using Heron’s formula for area of a triangle.

The area of a triangle with side-lengths a, b, c is obtained as follows:

Step 1: First calculate s = (a+ b+ c)/2, (half the perimeter);

Step 2: Now, the area A =
√
s(s− a)(s− b)(s− c).

Now write a code to implement the classes.

(34) Implement the following classes using inheritance, augmentation, and overriding as follows:

(a) Here, name represents the full name, hourlyWage represents the hourly wage, and

numHours represents the number of hours worked by the Employee instance. The

instance methods getName() and getHourlyWage() are accessors for the Employee

instance.

(b) A FullTime instance is expected to have numHours ≥ 40 per week. For every over-time

hour, the employee gets paid 120% of their regular hourly wage. Define the method

getWeeklyIncome() accordingly.

(c) A PartTime instance is expected to have numHours < 40 per week, and will get

paid only 85% of their regular hourly wage. Override the method getHourlyWage()

accordingly for this class. Further, define getWeeklyIncome() for this class accordingly.

(35) Chapter 9 Review from the textbook.

(36) Rewrite the DNA to RNA transcription of section 4.2 (page 135 of the textbook) using

recursion.

(37) Draw a trace: Problem 11.27 from page 395 of the textbook.

(38) Draw a trace: Problem 11.28 from page 395 of the textbook.

(39) Write a recursive function reverseConcatenate that takes as input a list with string entries

and returns one long string which is the concatenation of all the string entries in reverse

order. For instance, reverseConcatenate([’how’, ’are’, ’you?’]) should return ’you?arehow’.

183

(40) Solve the Towers of Hanoi problem.

(41) TKinter : Draw a tree using recursion.

(42) TKinter : Draw a pyramid (one rectangle in each level) using recursion.

(43) Chapter 11 Review from the textbook.

(44) Write an interactive function which asks the user for a name, pet’s name, and the age of the

pet. This function should return a list named patients in which each entry is a tuple (name,

pet’s name, pet’s age).

(45) Write an interactive function which asks the user for a name, and some names of friends.

This function will return a dictionary named friends which associates to a name-key a set

of friends. For instance, here is an interaction:

>>> Please g ive me a name (<Enter> f o r done) : Jane

>>> Give the name o f one o f Jane ’ s f r i e n d (<Enter> f o r done) : Hol ly

>>> Give the name o f one o f Jane ’ s f r i e n d (<Enter> f o r done) : Hugh

>>> Give the name o f one o f Jane ’ s f r i e n d (<Enter> f o r done) :

>>> Please g ive me a name (<Enter> f o r done) : Joe

>>> Give the name o f one o f Joe ’ s f r i e n d (<Enter> f o r done) : Matt

>>> Give the name o f one o f Joe ’ s f r i e n d (<Enter> f o r done) :

>>> pr in t (f r i e n d s) #This should re turn a d i c t i o n a r y l ook ing l i k e

>>> { ’ Jane ’ : { ’ Holly ’ , ’Hugh ’} , ’ Joe ’ : { ’ Matt ’} }

(46) Chapter 12 Review from the textbook.

(47) TKinter : Draw a shrinking orange circle. That is, draw a large orange circle, which shrinks

in size with a time delay of 0.25 seconds until it disappears.

(48) TKinter : Given an integer n greater than or equal to 3, draw a regular n-gon, coloured

violet.

(49) TKinter : Draw a Stop Sign on a canvas. The Stop Sign is a regular octagon coloured red

with a white ”STOP” written in its center.

(50) TKinter : Write a GUI compound interest calculator. The relevant form:

P = Principal in dollars to be invested;

r = yearly rate of interest written in decimal;

n = number of times the interest is to be compounded each year;

t = number of years the principal is invested.

I = P
(

1 +
r

n

)nt
− P The final interest.

(51) TKinter : Write a GUI programme which draws a tiny blue circle on a canvas wherever

we click on the canvas.

(52) Chapter 15 Review from the textbook.

(53) Use urllib.request to write a short code which would download the webpage

http://www.bcc.cuny.edu/academics/learning-commons/ and write the contents to a file

named webpage.html.

(54) Write a persistent echo server hosted on your localhost.

184

(55) Write a simple echo server which returns three copies of a message sent to it. Host this

server on your localhost.

(56) Chapter 16 Review from the textbook.

