Kerry Ojakian's CSI 31 Class

Class Assignment \#4

General Instructions:

- You may work in a group of at most 3 students.
- Classwork must be put in a your dropbox folder; if there are multiple parts, create a single folder for the class assignment. Make sure you give clear names to your files and folders. Make sure that you indicate all the people in your group.
- When you are done, email me to tell me who's folder the class work is in; also, tell me who is in your group.

The Assignment

1. Without typing the following program into the computer determine its output; justify your answer.
```
def myFunct(L,x):
    L[2] = L[3]
    x = x + 10
    return x
x = 577
myList = ['good', 8, 'aunt', 'be', 100]
rVal = myFunct(myList, x)
print("Function return:", rVal)
print("x:",x)
print("myList:", myList)
```

2. Write a function that takes a numerical grade as input (a number between 0 and 100 , inclusive) and outputs a letter grade (i.e. appropriate string), using the following scheme:

- 95 or larger: A+
- At least 90 and less than 95: A
- At least 80 and less than 90: B
- At least 60 and less than 80: C
- Less than 60: F

3. Write a function CountTwinPrimes to count the number of twin primes such that both numbers are less than the given input. For example, on input 13, the output should be 2; while on input 14 , the output should be 3 . Write your program following these steps:
(a) First write the CountTwinPrimes function assuming you have a function prime. The function prime takes a number as input and returns True if the given number is prime and returns False if the given number is not prime.
(b) Then write (or copy in) the prime function.
(c) Use the prime function to complete the CountTwinPrimes function.
4. (Extra Credit) Do you think there are infinitely many twin primes? Use your program to gather evidence for or against. You will get extra credit for giving a thoughtful answer to this question.
