Kerry Ojakian's MTH 30 Class Class Assignment #7

- 1. Consider the function f(x) = 5x 1. And consider its inverse function f^{-1} .
 - (a) Before finding the full inverse function, just calculate $f^{-1}(-1)$ and $f^{-1}(0)$.
 - (b) Check algebraically if g(x) = (1/5)x + 1 is the inverse function.
 - (c) If g is NOT the inverse, then find the inverse algebraically.

2. Consider the function f given by the following table.

x	2	4	6	10	15	17
f(x)	3	4	13	2	6	14

Use the table to evaluate each.

- (a) f(2) (b) f(10)
- (a) $f^{-1}(14)$ (b) $f^{-1}(4)$
- (a) $f^{-1}(2)$
- 3. For each pair of functions, check if they are inverses by verifying f(g(x)) = x and g(f(x)) = x.
 - (a) f(x) = 2x, g(x) = x + 2 (b) f(x) = 7 x, g(x) = 7 x

4. Suppose f(x) = 4x - 3. Find the inverse $f^{-1}(x)$ using algebra.

5. Show that f(x) = 4x - 7 and $g(x) = \frac{x+7}{4}$ are inverses.

6. Show that $f(x) = \frac{x-2}{2x+1}$ and $g(x) = \frac{-x-2}{2x-1} + 5$ are inverses.

7. Find the inverse of the function f(x) = 2x - 1.

8. Find the inverse of the function $h(x) = x^2 - 4$, with domain $(-\infty, 0]$ (so $x \le 0$).

9. Find the inverse of the function $f(x) = \frac{x-1}{x+1}$.