Kerry Ojakian's MTH 30 Class Class Assignment #5

- 1. How does f(x+21) 8 transform the graph of f(x)?
- 2. How does g(x-1) 42 transform the graph of g(x)?
- 3. How does g(25x) transform the graph of g(x)?
- 4. How does $g(\frac{x}{3})$ transform the graph of g(x)?
- 5. Write a formula for the function obtained when the graph of $f(x) = x^3$ is shifted up 1 unit and to the left 2 units.
- 6. Write a formula for the function obtained when the graph of f(x) = |x| is shifted up 3 units and to the right 7 units.
- 7. Write a formula for the function obtained when the graph of $g(x) = \frac{1}{x}$ is shifted down 4 units and to the right 5 units. Write the resulting function as a single rational expression!

- 8. Graph $f(x) = x^2$. Then:
 - (a) Let $g(x) = (x+3)^2 1$. Describe in (b) Let h(x) words the transformation from graph f transformation from graph f.
 - (b) Let $h(x) = -x^2$. Describe in words the transformation from graph f to graph h.

- 9. Determine where the function $f(x) = 7(x-4)^2$ is increasing and where it is decreasing. Use graph transformations.
- 10. Determine where the function $g(x) = -3+72(x+42)^3$ is increasing and where it is decreasing. Use graph transformations (this problems is easy!).
- 11. Determine where the function $g(x) = \frac{72}{x-20} 30$ is increasing and where it is decreasing. Use graph transformations.
- 12. Consider $f(x) = x^2 + 5$. On one axis graph the basic function it is transformed from. Then on another axis, graph f(x) using graph transformations.

13. Consider g(x) = |x+3| - 5. On one axis graph the basic function it is transformed from. Then on another axis, graph g(x) using graph transformations.

14. Consider $g(x) = 2 + \frac{1}{3x}$. On one axis graph the basic function it is transformed from. Then on another axis, graph g(x) using graph transformations.

15. Consider $h(x) = 4 \cdot \sqrt{x-2}$. On one axis graph the basic function it is transformed from. Then on another axis, graph h(x) using graph transformations. 16. Consider $h(x) = 2^{x-2} - 2$. On one axis graph the basic function it is transformed from. Then on another axis, graph h(x) using graph transformations.

17. Consider $f(x) = -3x^2 - 4$. On one axis graph the basic function it is transformed from. Then on another axis, graph f(x) using graph transformations.

18. Consider $f(x) = 4^{-x}$. On one axis graph the basic function it is transformed from. Then on another axis, graph f(x) using graph transformations.