HW #1

Kerry Ojakian's MTH 30 Class

Due Date: Thursday September 18

General Instructions:

- Homework must be stapled, be relatively neat, and have your name on it.
- Use tutors, work with other students, but ... don't copy!

The Assignment

1. Let $h(x) = 5 + 2x^3$. Evaluate h(2) and h(-2).

2. Consider the piecewise defined function given by
$$f(x) = \begin{cases} x & \text{if } x < -2\\ 2x - 1 & \text{if } -2 \le x \le 3\\ -4x & \text{if } x > 3 \end{cases}$$

1

Find the following values.

(a)
$$f(-5) =$$

(d)
$$f(3) =$$

(b)
$$f(-2) =$$

(c)
$$f(0) =$$

(e)
$$f(4) =$$

3. Consider the function f given by the following table.

(a) Evaluate
$$f(17)$$

(c) For what
$$x$$
 does $f(x) = -13$

(b) Evaluate
$$f(2)$$

(d) Solve
$$f(x) = 6$$
.

- 4. For the function $f(x) = \frac{3x^2 1}{x^2}$, find (and simplify when possible)
 - (a) f(2) =

(d) f(x-1) =

(b) f(-1) =

(e) f(-x) =

(c) f(r) =

- (f) $f(x^3) =$
- 5. Consider the equation 6t = 8y + 4. Write y as a function of t.
- 6. Suppose that f(x) = 7 2x. Solve f(x) = 11.
- 7. Draw a graph which is a function but not one-to-one. Why is it a non one-to-one function?

- 8. Consider the following two relations. For each one, is it a function or not?
 - (a) $\{(2,4),(4,2),(3,4),(1,1)\}$

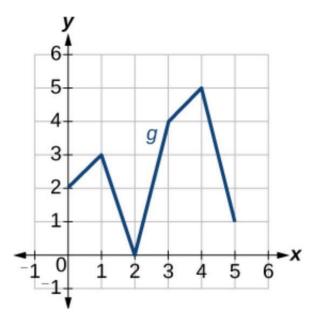
- (b) $\{(2,4),(3,5),(2,6),(7,9)\}$
- 9. Solve the inequality and graph its solution.

$$-8 - 7x > -1$$

10. Let
$$f(x) = \frac{x(9+6x)(x-5)}{4(x-113)(3x+66)}$$
.

- (a) Evaluate f(0).
- (b) When is the function undefined?
- (c) What is the domain of the function?
- (d) Which x values make f(x) = 0?
- 11. Find the domain of $f(x) = 7\sqrt{5x + 10}$.
- 12. Find the domain of $f(x) = \frac{1}{x^2 + x 12}$
- 13. Let

$$f(x) = \begin{cases} \frac{3}{x-1}, & x \le 2, \\ 4, & x > 2. \end{cases}$$


What is the domain of f?

14. Draw a graph with an absolute maximum, but no absolute minimum, which does have a relative minimum.

15. What are the absolute extrema of the graph of $y = x^2 + 1$?

16. Consider the function graphed below.

- (a) Find the intervals where it increases.
- (b) Find the intervals where it decreases.
- (c) Find all local maxima (both x and y coordinates).
- (d) Find all local minima (both x and y coordinates).

- 17. Let $f(x) = \frac{1}{x^3}$ and $g(x) = \sqrt{x+1}$. Find the domain of each of the following.
 - (a) (f+g)

(c) (f * g)

(b) (f - g)

(d) $\left(\frac{f}{g}\right)$

- 18. Let f(x) = 2x and g(x) = x + 10.
 - (a) Find $(f \circ g)(5)$

(c) Find f(f(5))

(b) Find g(f(5))

- (d) Find $(g \circ g)(5)$
- 19. Let $f(x) = x^2 + x 2$ and $g(x) = \frac{x}{x^2 + 3}$. Find (and simplify) the following.
 - (a) f(g(x))

(b) g(f(x))

- 20. Let $H(x) = \frac{1}{(2x+1)^2}$. Find functions f and g so that $H = f \circ g$.
- 21. For $f(x) = \sqrt{x}$ and $g(x) = x^2$, write the domain of $f \circ g$ in interval notation. Also, find the domain of $g \circ f$.

- 22. How does f(x+21) 8 transform the graph of f(x)?
- 23. Write a formula for the function obtained when the graph of $f(x) = x^3$ is shifted up 1 unit and to the left 2 units.
- 24. How does g(25x) transform the graph of g(x)?
- 25. How does g(25x) transform the graph of g(x)?
- 26. Consider $h(x) = 2^{x-2} 2$. On one axis graph the basic function it is transformed from. Then on another axis, graph h(x) using graph transformations.