MTH 28.5 LECTURE NOTES (Ojakian)

Topic 31: Complex Numbers

OUTLINE

(References: 8.8)

1. Complex Numbers: Addition, Subtraction, Multiplication, Division
2. Fundamental Theorem of Algebra
3. Solving Unusual Equations

PROBLEM 1. Solve each equation.
(a) $x^{2}-1=0$
(b) $x^{2}+1=0$

Definition 1. The number \mathbf{i} is a new number such that $\mathbf{i}^{2}=-1$.
PROBLEM 2. Solve each equation (complex number solutions allowed).
Can do by "Square Root Property"
(a) $x^{2}-100=0$
(b) $x^{2}+100=0$

Observe: Some polynomial equations have solutions, some have none (if only real numbers allowed!).

Theorem 1. (Fundamental Theorem of Algebra) Every polynomial equation has a solution if we allow complex solutions.
2. Complex Numbers: Powers of i and square roots of negatives

PROBLEM 3. Simplify each expression.
(a) \mathbf{i}^{3}
(b) \mathbf{i}^{4}
(c) \mathbf{i}^{5}
(d) \mathbf{i}^{6}
(e) \mathbf{i}^{1001} (for fun, if you like ...)
(f) $\sqrt{-1}$
(g) $\sqrt{-4}$
(h) $\sqrt{-8}$

3. Complex Numbers: Addition and Subtraction

PROBLEM 4. Simplify each expression.
(a) $4+7 \mathbf{i}+10-3 \mathbf{i}$
(b) $(2+3 i)-(-1-7 i)$
(c) $3 \mathbf{i}+7-5 \mathbf{i}+3+2 \mathbf{i}^{2}$
(d) $-2 \mathbf{i}^{4}+2-5 \mathbf{i}+3+2 \mathbf{i}$

Definition 2. A complex number (in "standard form") is a number of the form $a+b \mathbf{i}$ where a and b are real numbers.
4. Complex Numbers: Multiplication

PROBLEM 5. Perform the operation and simplify.
(a) $7 \mathbf{i} \cdot 10 \mathbf{i}$
(b) $3 \mathbf{i}(5-2 \mathbf{i})$
(c) $(2+3 \mathbf{i})(-1-7 \mathbf{i}) \quad$ (notice how this question is different from Problem 4, part (b)).
5. Complex Numbers: Division

For a simplified complex number, we do not want \mathbf{i} on the bottom of a fraction.
PROBLEM 6. Perform the operation, simplify, and write in standard form.
(a) $\frac{5}{\mathrm{i}}$
(b) $\frac{6}{9 \mathbf{i}}$
(c) $(3+\mathbf{i})(3-\mathbf{i})$ (called"conjugates")
(d) $\frac{1}{7-2 \mathbf{i}}$
(e) $\frac{2}{5+\mathbf{i}}$

