MTH 28.5 LECTURE NOTES (Ojakian)

Topic 29: Radical Arithmetic

OUTLINE

References: 8.4, 8.5

1. Rules

(a) Radicals
i. $\sqrt[n]{A \cdot B}=\sqrt[n]{A} \cdot \sqrt[n]{B}$
ii. $\sqrt[n]{\frac{A}{B}}=\frac{\sqrt[n]{A}}{\sqrt[n]{B}}$
iii. $\sqrt[n]{A^{n}}=A($ for $A \geq 0)$
(b) Exponents
i. $A^{n} \cdot A^{m}=A^{n+m}$
ii. $\frac{A^{n}}{A^{m}}=A^{n-m}$
iii. $(A \cdot B)^{n}=A^{n} B^{n}$
iv. $\left(\frac{A}{B}\right)^{n}=\frac{A^{n}}{B^{n}}$
v. For $A \geq 0$: $\quad\left(A^{n}\right)^{m}=A^{n m}$
2. Simplification Requirements
(a) No exponents are negative.

Example: $x^{3} y^{-4}$ should be simplified to $\frac{x^{3}}{y^{4}}$
(b) Nothing can be pulled out of a radical.

Example: $\sqrt[3]{16}$ should be simplified to $2 \sqrt[3]{2}$.
(c) All the exponent rules (from the key rules above) should be carried out.

Example: $x^{3} x^{5}$ simplifies to x^{8}.
(d) Exponents on numbers should be evaluated, left as a simplified radical if need be.

Example: $25^{1 / 2}$ should be simplified to 5 .
Example: $8^{1 / 2}$ should be simplified to $2 \sqrt{2}$.
(e) There are no radical symbols in the denominator.

Example: $\frac{1}{\sqrt{5}}$ should be simplified to $\frac{\sqrt{5}}{5}$
3. Division - Radical Expressions

PROBLEM 1. Simplify the following:
(a) $\frac{3}{\sqrt{6}}$
(b) $\sqrt{\frac{18 m^{5} n^{6}}{p^{12} q^{4}}}$
(c) $\sqrt{\frac{4}{49 A C^{2}}}$
(d) $\frac{10 m n}{\sqrt{5 m n}}$
4. Add/Subtract - Radical Expressions

PROBLEM 2. Simplify the following.
(a) $\sqrt{2}+3 \sqrt{2}$
(b) $\sqrt[3]{4}-5 \sqrt[3]{4}$
(c) $\sqrt{75}+\sqrt{48}-7 \sqrt{12}$
(d) $\sqrt{20}+\sqrt[3]{54}-2 \sqrt{45}+\sqrt{7}+10 \sqrt[3]{16}-4 \sqrt[3]{3000}$
(e) $3 \sqrt{8}(2 \sqrt{10}-\sqrt{27})$
(f) $(\sqrt{5})^{2}+(\sqrt{3})^{2}$
(g) $(\sqrt{5}+\sqrt{3})^{2}$

