MTH 28.5 LECTURE NOTES (Ojakian)

Topic 12: Lines

OUTLINE

References: 3.1, 3.2

1. Linear versus non-linear equations
2. Lines
3. Intercepts and Slope

1. Graphing Lines

PROBLEM 1. For each equation, guess which ones have a graph that is a line, and which ones have a graph that is not a line.
(a) $y=-x$
(b) $y-3=x^{2}$
(c) $2 y=2+x$
(d) $y-3 x^{2}=-10$

PROBLEM 2. Can you think of a method for determining which equations have a line for a graph?

2. Linear Equations

Definition 1. An equation in two variables (x and y) is called linear if can be simplified to the form: " $y=M x+B$ " or " $x=C$ " or " $y=C$ "

Definition 2. (Intuitive) An equation in two variables (x and y) is called linear if has only " x " terms, " y " terms, and numbers, with everything else cancelling out.

PROBLEM 3. Consider the equations we have looked at so far. Which ones are linear? Which ones are non-linear?

Theorem 1.

- The graph of a linear equation is a line.
- Any line can be described with some linear equation.

3. Intercepts
(a) Recall the definition of x-intercepts and y-intercepts.

PROBLEM 4. For each equation, find the intercepts of its graph.
i. $y=3 x+3$
ii. $x+2 y=1$
(b) To find intercepts:
i. To find x-intercept, set $y=0$, then solve for x.
ii. To find y-intercept, set $x=0$, then solve for y.

4. Graphing a line

PROBLEM 5. Consider problem 4. Graph each of the equations.
(a) To graph a line:
i. Find any two points (such as x and y intercepts).
ii. Connect the points by a straight line

5. Special Lines

PROBLEM 6. Graph each equation in the plane.
(a) $y=3$
(b) $x=2$
PROBLEM 7. Describe a method for graphing lines like the ones appearing in the last two problems.
6. Slope

Slope: A number that measures the "steepness" of a line.
(a) Finding slope by "lining up the points"
i. Line up points and subtract
ii. Get the y-change
iii. Get the x-change.
iv. Slope $=\frac{y-\text { change }}{x-\text { change }}$
v. Note: Be careful of sign!
(b)

PROBLEM 8. Suppose a line contains the following points: $(0,1),(2,5),(-1,-1)$. Find its slope.
Theorem 2. The slope of a line is the same, no matter what two distinct points are used to compute it.
PROBLEM 9. Find the slope of the line $x+y=3$
PROBLEM 10. Using problems as examples, answer the following questions.
i. What is the slope of a horizontal line?
ii. What is the slope of a vertical line?
iii. Describe the difference between a line with positive slope versus a line with negative slope.
7. Slope-Intercept Form of a line
PROBLEM 11. Based on the above problems, guess a fast way to determine the slope of a line.
(a) Line with slope m and y -intercept b_{2} has equation $y=m x+b$.
(b) Equation \rightarrow slope and y-intercept
i. Put in slope-intercept form (i.e. solve for y)
ii. Then find m and b.
(c) Using Slope-Intercept Form to Graph a line
i. Use the y-intercept as one point.
ii. Use the slope to find a second point:
A. Write slope as $\frac{(+ \text { or }-) V}{H}$
B. Start at the y-intercept
C. Move to the right H
D. Move up or down V (up for positive slope, down for negative)

