MTH 28.5 LECTURE NOTES (Ojakian)

Topic 12: Lines

OUTLINE

References: 3.1, 3.2

- 1. Linear versus non-linear equations
- 2. Lines
- 3. Intercepts and Slope

1. Graphing Lines

PROBLEM 1. For each equation, guess which ones have a graph that <u>is a line</u>, and which ones have a graph that is <u>not a line</u>.

- (a) y = -x
- (b) $y 3 = x^2$
- (c) 2y = 2 + x
- (d) $y 3x^2 = -10$

PROBLEM 2. Can you think of a method for determining which equations have a line for a graph?

2. Linear Equations

Definition 1. An equation in two variables (x and y) is called **linear** if can be simplified to the form: "y = Mx + B" or "x = C" or "y = C"

Definition 2. (Intuitive) An equation in two variables (x and y) is called **linear** if has only "x" terms, "y" terms, and numbers, with everything else cancelling out.

PROBLEM 3. Consider the equations we have looked at so far. Which ones are linear? Which ones are non-linear?

Theorem 1.

- The graph of a linear equation is a line.
- Any line can be described with some linear equation.

3. Intercepts

(a) Recall the definition of x-intercepts and y-intercepts.

PROBLEM 4. For each equation, find the intercepts of its graph.

1

i. y = 3x + 3

ii. x + 2y = 1

(b) To find intercepts:

- i. To find x-intercept, set y = 0, then solve for x.
- ii. To find y-intercept, set x = 0, then solve for y.

4. Graphing a line

PROBLEM 5. Consider problem 4. Graph each of the equations.

- (a) To graph a line:
 - i. Find any two points (such as x and y intercepts).
 - ii. Connect the points by a straight line

5. Special Lines

PROBLEM 6. Graph each equation in the plane.

- (a) y = 3
- (b) x = 2

***PROBLEM* 7.** Describe a method for graphing lines like the ones appearing in the last two problems.

6. Slope

Slope: A number that measures the "steepness" of a line.

(a) Finding slope by "lining up the points"

- i. Line up points and subtract
 - ii. Get the y-change
- iii. Get the x-change.
- iv. Slope $= \frac{y \text{change}}{x \text{change}}$
- v. Note: Be careful of sign!

PROBLEM 8. Suppose a line contains the following points: (0,1), (2,5), (-1,-1). Find its slope.

Theorem 2. The slope of a line is the same, no matter what two distinct points are used to compute it.

PROBLEM 9. Find the slope of the line x + y = 3

PROBLEM 10. Using problems as examples, answer the following questions.

- i. What is the slope of a horizontal line?
- ii. What is the slope of a vertical line?
- iii. Describe the difference between a line with positive slope versus a line with negative slope.

7. Slope-Intercept Form of a line

PROBLEM 11. Based on the above problems, guess a fast way to determine the slope of a line.

(a) Line with slope m and y-intercept b has equation y = mx + b.

⁽b)

- (b) Equation \rightarrow slope and y-intercept
 - i. Put in slope-intercept form (i.e. solve for y)
 - ii. Then find m and b.
- (c) Using Slope-Intercept Form to Graph a line
 - i. Use the y-intercept as one point.
 - ii. Use the slope to find a second point:

A. Write slope as $\frac{(+ \text{ or } -) V}{H}$

- B. Start at the y-intercept
- C. Move to the right H
- D. Move up or down V (up for positive slope, down for negative)