MTH 28.5 LECTURE NOTES (Ojakian) Topic 11: Equations in 2 Variables and The Plane

OUTLINE

References: 3.1

- 1. Equations in 2 variables
 - (a) Checking a point
 - (b) From one variable \rightarrow Other variable
 - (c) Finding a solution
- 2. Cartesian Plane
 - (a) Coordinates \rightarrow Point
 - (b) Point \rightarrow Coordinates
- 3. Different ways to represent a relationship between 2 quantities
 - (a) By an equation
 - (b) By a picture GRAPHING!
- 4. Real-World applications of these ideas

1. Equations in two variables

(a) Checking a Pair

PROBLEM 1. Consider the equation $x^2 + y^2 = 4$. Which of the following pairs of values make the equation true?

- *i.* x = 2 and y = 0
- *ii.* x = 1 and y = 3
- *iii.* x = 0 and y = -2

Definition 1. Given an equation in two variables, a solution is a pair of numbers that make the equation true.

Definition 2. Given an equation in two variables, its solution set is the set of all its solutions.

PROBLEM 2. Find three solutions to the equation $x^2 + y^2 = 4$ (recall problem 1).

(b) <u>Convention</u>: For an equation in variables "x" and "y", the solutions are listed as pairs of numbers: The first number represents "x" and the second number represents "y".

PROBLEM 3. Represent three solutions to the equation $x^2 + y^2 = 4$ using the "pair convention".

PROBLEM 4. Consider the equation $2x^3 - y^2 = 7$. Check if each pair is a solution.

- *i.* (2, -3)
- *ii.* (-1, 0)
- (c) Finishing a Pair

PROBLEM 5. Consider the equation 2x + 3y = 5. Find the solution which has x = -2, also the one that has y = -2

- (d) Strategy to "finish a pair"
 - i. Solve for the other variable
 - ii. Plug in given value
 - iii. (Can reverse the order)
- (e) Finding some solutions

PROBLEM 6. Find any three solutions to the following equation: 2y - x = 1.

- (f) Strategy for finding solutions
 - i. Choose one variable as you please!
 - ii. Plug it in and solve for the other variable.

2. <u>Cartesian Plane</u>

<u>Two Goals</u>:

- (a) Represent data as a picture.
- (b) Represent an equation in two variables using a picture.

Definition 3. The Cartesian Plane consists of two number lines: the x-axis and the y-axis.

- (a) Two skills:
 - i. Given the coordinates of a point, plot it.
 - ii. Given the plotted point, find its coordinates

PROBLEM 7. Draw the x and y axis. Then plot the following points (label each point by the letter).

- A. (2,5)
- *B.* (5,2)
- C. (-1,2)
- D. (3, -2)
- E. (-4, -3)
- F.(0,4)
- G.(4,0)
- (b) Terminology
 - i. Origin
 - ii. 4 quadrants

***PROBLEM* 8.** Consider each point below in the above problem. If it is on an axis, state which axis it is on (x-axis or y-axis?). Otherwise, state which quadrant it is in. Can do the same for the above points.

(c) Application to real world data

PROBLEM 9. Read pages 49, 50 in the REAL WORLD BOOK, and plot (maybe just last 5 years).

- i. Choose step size (for each axis) that meets the needs
- ii. Mark every increment by that step size

3. Graphing

Definition 4. A graph is a set of points on the plane.

PROBLEM 10. Draw the x-axis and the y-axis. Then do the following.

- (a) Draw any graph that contains a finite number of points.
- (b) Draw any graph that contains an infinite number of points.

Definition 5. Given an equation in two variables, the graph of the equation is the graph consisting of all the points in the solution set of the equation.

PROBLEM 11. Estimate the graph of each equation by plotting some solutions and guessing what the rest of the solutions are. Are either of the graphs lines?

 $(a) \ 3 - y = x$

(b) $x^2 + y^2 = 16$

Definition 6. Consider any graph.

- Its x-intercepts are the points where it touches the x-axis.
- Its y-intercepts are the points where it touches the y-axis.

PROBLEM 12. Consider problem 11. For each graph, what are the x-intercepts and what are the y-intercepts?