MTH 28.5 LECTURE NOTES (Ojakian) Topic 10: Solving Inequalities

OUTLINE References: 2.5

- 1. Inequality terminology
 - (a) Basic terminology
 - (b) Solution set
 - (c) Graphing inequalities
- 2. Solving Linear Inequalities

1. Meaning of inequality signs

PROBLEM 1. For each statement, is it true or false?

 $\begin{array}{ll} (a) & 5 < 6.3 \\ (b) & 0 > \frac{91}{13} \\ (c) & -43 > -100 \\ (d) & 5 = 5.03 \\ (e) & 3 \leq 7 \\ (f) & 3 < 3 \\ (g) & 3 \leq 3 \\ (h) & -\frac{3}{4} \geq -10 \\ (i) & -\frac{3}{4} \geq -\frac{3}{4} \\ (j) & -\frac{3}{4} < -\frac{3}{4} \\ (k) & -\frac{3}{4} > -\frac{3}{4} \end{array}$

2. <u>Solution set</u>

Definition 1. The solution set of an inequality is the set of numbers that make it true.

PROBLEM 2. For each inequality, find three different numbers in its solution set.

(a) x > -5(b) $x \ge -5$

(c) $2u+1 \le u$

Definition 2. To solve an inequality means to find **all** the numbers in its solution set.

3. Graphing solutions on the number line

How do you represent **all** the solutions? Often is infinite!

PROBLEM 3. For each inequality, graph its solution set on the number line.

(a)
$$x > 3$$

(b) $-1 > x$
(c) $-5 \le x$

Definition 3.

- The symbols < and > are called strict inequalities. To graph them, use an open circle or a round brace.
- The symbols ≤ and ≥ are called non-strict inequalities. To graph them, use a filled-in circle or a square brace.

4. Solving Inequalities

(a) Principle: Use all the usual rules (for equations), except for the exceptions ...

(b)

PROBLEM 4. For each inequality graph its solution set.

 $i. x \ge 5$ $ii. 2x \ge 10$ $iii. -2x \ge -10$ $iv. -2x \le -10$

PROBLEM 5. Consider problem 4 and the first inequality $x \ge 5$.

- i. Describe how we change $x \ge 5$ to get the second inequality $2x \ge 10$? (i.e. what did we do to both sides of the inequality $x \ge 5$?)
- ii. Describe how we change $x \ge 5$ to get the third inequality $-2x \ge -10$?
- iii. Describe how we change $x \ge 5$ to get the fourth inequality $-2x \le -10$?
- (c) Principle for solving inequalities: Use all the usual rules (for equations), **except** that when you multiply or divide by a negative number **reverse the inequality**.

```
(d)
```

PROBLEM 6. Solve each inequality

i. 10x > 50 $ii. -4x \le 20$ $iii. \frac{x}{2} \ge 3$ $iv. \frac{x}{-3} > 6$

PROBLEM 7. From section 2.5 do exercises: 314, 316

5. <u>Possible kinds of solutions</u>

PROBLEM 8. Using common sense (not algebra), find the solution set of each inequality.

(a) x < x - 5

(b) $x+2 \ge x$

PROBLEM 9. Consider the examples in problem 8.

- (a) If you try to solve them using algebra, what happens?
- (b) Describe a rule for determining when there is no solution and when all real numbers are solutions.

PROBLEM 10. For each of the following inequalities, it either has no solutions or all real numbers as solutions. Determine which is the case for each inequality.

- (a) $2x + 3x \le 5(x + 10)$
- (b) -2(-3x+1) > x + 5(2+x)