MTH 28.5 LECTURE NOTES (Ojakian)

Topic 3: Arithmetic with Fractions

OUTLINE References (1.2, .1.3, 1.4)

- 1. Multiplying and Dividing Fractions/Decimals
- 2. Adding and Subtracting Fractions/Decimals
- 3. Prime and composite numbers
- 4. Factoring integers
- 5. Least Common Multiple (LCM)

1. Factoring Integers

(a) Prime and composite numbers

Definition. An integer N is prime if N > 1 and the only positive integers dividing into N evenly are 1 and N.

PROBLEM 1. For each number, determine whether it is 1) prime, 2) not prime

5, 4, 2, 9, 1, 10000, 51

(b) Factoring an integer

Definition. An integer is **factored** if it is written as a product of primes (the factorization of a prime number is just the number itself).

Theorem. A positive integer larger than 1 has exactly one factorization (except for re-ordering).

PROBLEM 2. Factor each of the following integers: 10, 63, 17.

Note: Use exponents to abbreviated repeated multiplication.

2. The Fundamental Principle of Fractions

- (a) $\frac{a}{b} = \frac{ac}{bc}$ (multiply top and bottom by same number)
- (b) $\frac{a}{b} = \frac{a \div c}{b \div c}$ (divide top and bottom by same number)

PROBLEM 3. Write each fraction as 3 different fractions: 2/4, 7/3, -1/4.

3. Simplified Fraction (or Reduced Fraction)

Definition. A fraction a/b is simplified if there is <u>no</u> integer larger than 1 divides evenly into both a and b.

PROBLEM 4. Simplify the fractions: 28/36, 3/13

4. Multiplication of Fractions

- (a) Multiply tops
- (b) Multiply bottoms
- (c) Simplify

PROBLEM 6.

- *i.* Compute the following: $\frac{1}{2} \cdot \frac{1}{5}$
- ii. Convert the fractions to decimal and then try the calculation.
- iii. Does the answer make sense? (it should!)

PROBLEM 7. Compute the following:

$$i. \quad \frac{2}{3} \cdot \left(-\frac{1}{5}\right)$$
$$ii. \quad \frac{-2}{-3} \cdot \left(\frac{-1}{5}\right)$$
$$iii. \quad \frac{2}{5} \cdot \frac{15}{8}$$
$$iv. \quad \frac{49}{88} \cdot \frac{-11}{7}$$

- 5. Dividing Fractions
 - (a) Find reciprocal of second fraction
 - (b) Then multiply

PROBLEM 8.

- i. Compute the following: $\frac{3}{2} \cdot \frac{1}{4}$
- ii. Convert the fractions to decimal and then try the calculation.
- *iii.* Does the answer make sense? (it should!)

PROBLEM 9. Compute the following:

i.
$$-\frac{50}{12} \div \frac{-5}{3}$$
 (Simplify before calculating!)
ii. $\frac{1}{5} \div \frac{10}{7}$ (Be careful on simplify!)

6. Adding and Subtracting Fractions

(a) When denominators are the same. Recall interpretation: A/B means to take A steps of size 1/B each. **PROBLEM 10.** By counting on the number line compute the following: i. 3/4 + 2/4 *ii.* $-\frac{3}{4} + \frac{-1}{4} + \frac{5}{4}$ *iii. Convert the fractions to decimals and try it. Make sense? (it should!)*

7. <u>Conversions</u>

(a) Fraction \rightarrow Mixed

Divide - Use quotient as integer part and use remainder as the top

PROBLEM 11. Convert 13/3 to a mixed number (use both methods).

- (b) Mixed \rightarrow Fraction
 - i. Find the product of the integer part and the bottom
 - ii. Add to the top **PROBLEM 12.** Write 3²/₇ as an improper fraction.
 What happens if it were negative?
- (c) Fraction \rightarrow Decimal: Just Perform division

PROBLEM 13. Write the fractions as decimals (rounded to nearest tenth): 3/2, -1/3.

- (d) Decimal \rightarrow Fraction
 - i. Write as "(decimal)/1"
 - ii. Multiply top/bottom by appropriate power of 10 (so decimal point is gone)
 - iii. Then simplify

PROBLEM 14. Convert the decimal 2.8 to a fraction.

8. Denominators NOT the same when Adding and Subtracting Fractions

- (a) Method.
 - i. Make the denominators the same! (i.e. find a common denominator)
 - ii. Then add or subtract tops
 - iii. Leave the bottom the same **PROBLEM 15.** Compute the following: $A. \frac{7}{20} + \frac{2}{5}$

$$B. \ \frac{1}{-2} - \frac{-2}{3} + -\frac{2}{5}$$

- 9. Quick way to get a common denominator
 - (a) Just multiple all the bottoms together to get the new bottom! (may get large numbers!)
 - (b) Thus: Multiply each fraction's top and bottom by the *other* bottoms
- 10. To find LEAST common denominator
 - (a) Least Common Multiple

Definition. The Least Common Multiple (L.C.M.) of a group of integers is the smallest integer that all the integers in the group divide into evenly.

i. Easier Way to find LCM: Count by multiples till the first common multiple is reached. 3^{3}

PROBLEM 16. Find the LCM for each group of integers.

- A. 3, 10
- *B.* 4, 6
- C. 120, 10, 5
- D. 24, 18 (Too hard? See next method.)
- ii. Harder Method for finding LCM (useful if the numbers are larger). Nice Picture: Page 48 in book.
 - A. Factor each integer in the group
 - B. Make a list of all the primes that appear.
 - C. For each prime, take the largest occurence
 - D. The LCM = product of these prime powers.

iii.

PROBLEM 17. Find the LCM for each group of integers.

A. 24, 18

B. 180, 225, 15

(b) Addition/Subtraction with large denominators

Definition. Given a group of fractions, the **Least Common Denominator** (**L.C.D.**) is the LCM of the denominators.

The LCD is the smallest common denominator that can be used for the addition and subtraction of fractions.

PROBLEM 18. Compute the following:

i.
$$\frac{2}{125} + \frac{1}{75}$$

ii. $\frac{1}{30} - \frac{-6}{-84} + -\frac{7}{30}$

11. Applications

PROBLEM 19. Find the area and perimeter of a rectangle of width 7 and height 3/14.

PROBLEM 20. If I pay every student in class 5.25 to study, how much do I lose? And if I only have 30 dollars, how many students can I pay?