MTH 28 LECTURE NOTES (Ojakian)

Topic 18: Complex Numbers

OUTLINE

(References: 8.8)

- 1. Complex Numbers: Addition, Subtraction, Multiplication, Division
- 2. Fundamental Theorem of Algebra

1. Solving Unusual Equations

PROBLEM 1. Solve each equation.

(a) $x^2 - 1 = 0$ (b) $x^2 + 1 = 0$

Definition 1. The number **i** is a new number such that $\mathbf{i}^2 = -1$.

PROBLEM 2. Solve each equation (complex number solutions allowed).

Can do by "Square Root Property"

(a) $x^2 - 100 = 0$ (b) $x^2 + 100 = 0$

<u>Observe</u>: Some polynomial equations have solutions, some have none (if only real numbers allowed!).

Theorem 1. (Fundamental Theorem of Algebra) Every polynomial equation has a solution if we allow complex solutions.

2. Complex Numbers: Powers of i and square roots of negatives

PROBLEM 3. Simplify each expression.

- (a) i^{3}
- (b) \mathbf{i}^4
- (c) \mathbf{i}^5
- (d) \mathbf{i}^6
- (e) \mathbf{i}^{1001} (for fun, if you like ...)
- (f) $\sqrt{-1}$
- (g) $\sqrt{-4}$
- (h) $\sqrt{-8}$

3. Complex Numbers: Addition and Subtraction

PROBLEM 4. Simplify each expression.

- (a) $4 + 7\mathbf{i} + 10 3\mathbf{i}$
- (b) (2+3i) (-1-7i)
- (c) $3i + 7 5i + 3 + 2i^2$
- $(d) \ -2{\bf i}^4+2-5{\bf i}+3+2{\bf i}$

Definition 2. A complex number (in "standard form") is a number of the form a + bi where a and b are real numbers.

4. Complex Numbers: Multiplication

PROBLEM 5. Perform the operation and simplify.

- (a) $7i \cdot 10i$
- (b) 3i(5-2i)
- (c) $(2+3\mathbf{i})(-1-7\mathbf{i})$ (notice how this question is different from Problem 4, part (b)).

5. Complex Numbers: Division

For a simplified complex number, we do not want \mathbf{i} on the bottom of a fraction.

PROBLEM 6. Perform the operation, simplify, and write in standard form.

(a) $\frac{5}{i}$ (b) $\frac{6}{9i}$ (c) (3+i)(3-i) (called "conjugates") (d) $\frac{1}{7-2i}$ (e) $\frac{2}{5+i}$