CSI 35 LECTURE NOTES (Ojakian)

Topic 18: Spanning Trees

OUTLINE

(References: Rosen: 11.4, 11.5)

- 1. Spanning Trees.
- 2. Minimum weight spanning trees
- 3. DFS, BFS, and Backtracking

1. Spanning Trees

- (a) Definition.
- (b) Graph has spanning tree IFF connected

2. Two ways: Breadth-first search and Depth-first search

In both cases, algorithms to find a spanning tree in a graph. Both have the following property:

- (a) Start at any vertex.
- (b) Stop when all the vertices of the graph are in your tree.

3. Find with Breadth-first search

- (a) Say the start vertex is at level 0.
- (b) Iteratively do the following for each vertex at level k: Add an edge to each of its unprocessed neighbors

4. Find with Depth-first search

- (a) Add edges in along a path till all neighbors are processed.
- (b) Backtrack as little as possible, and continue.

5. Backtracking Application

(a) Coloring with $\leq k$ colors - decision problem.

6. Cops and Robber Again

- (a) Copwin spanning tree
- (b) Our research question: Do spanning trees yield all winning strategies?

7. Minimum Cost Spanning Tree

- (a) Definition
- (b) Find by greedy construction (either Prim-Januk or Kruskal)

8. Exercises

- (a) Section 11.4: 1 12, 23
- (b) Section 11.4. DFS/BFS. 13 16, 17abc, 18abc, 19 21
- (c) Section 11.4. Coloring and Backtracking: 26, 29, 30
- (d) Section 11.5. Min Cost. 1 4 (use Prim or Kruskal), 9