
CSI 35 LECTURE NOTES (Ojakian)

Topic 17: Tree Traversals

OUTLINE
(References: Rosen: 11.3)

1. Prefix, postfix, infix

2. Preorder, postorder, inorder

1. Representing Expressions - 3 Notations

Arithmetic, logical, etc.

(a) Infix: Operator inbetween operands (usual way)

(b) Prefix: Operator before operands

(c) Postfix: Operator after operands.

(d) Calculation

i. Prefix: calculate right to left. Postfix: Calculate left to right.

ii. When an operator is encountered, the operands appear immediately before it.

iii. The result becomes a new operand

(e) Comparison

i. Infix: NOT left to right, in that follow order of operations.

ii. Postfix and Prefix: need no parentheses and are just read right to left (or left
to right).

iii. Postfix and Prefix: operation order is just order in expression, left to right or
right to left.

iv. Thus, typically, easier for a computer to work with postfix or prefix

(f) Exercises.

PROBLEM 1. Calculate the following postfix expressions:

i. 5 2 + 8 3 − ∗
ii. 6 13 + 3 5 − /

PROBLEM 2. Calculate the following prefix expressions

i. ∗ 9 + 2 6

ii. + 7 ∗ 45 + 2 0

1



2. Tree Traversal

Do by quick method of Figure 9 (page 814).

(a) Preorder: Add an element to your list the first time you pass it.

(b) Postorder: Add an element to your list the first time you pass if you go in reverse
(i.e. the last time you pass it going the ordinary way)

(c) Inorder: Add a leaf the first you pass it, and add an internal vertex the second time
you pass it.

3. Expression Tree

(a) Example: Put up tree for infix 3 ∗ (4 + 2)

(b) Expression tree has no implicit order.

(c) Can calculate from leaves up.

4. Expression Tree to Expression

(a) Inorder Traversal - corresponds infix expression

(b) Postorder Traversal - corresponds postfix expression

(c) Preorder Traversal - corresponds prefix expression

5. Expression to Expression Tree

(a) From expression, pick one of the 3 expression notations (infix, prefix, or postfix).

(b) Carry out the calculation process, BUT instead of doing calculation, build the tree
as you go:

i. When an operator applies, make it a new vertex, with its operands as its
children

ii. Can step by step convert the expression to a tree, placing the subtree instead
of the calculated value.

6. Translation

To translate one notation to another notation:

(a) Start with an expression in one notation.

(b) Build the expression tree.

(c) Do the appropriate tree traversal of the other notation.

7. Exercises

Note: Re-ordered from the book.

(a) Evaluation. 23 , 24

(b) Expression trees. 16, 17, 18, 19, 22

(c) Traversals. 7 - 15, 28, 29

(d) Parentheses. 20, 21

2


