CSI 35 LECTURE NOTES (Ojakian)

Topic 12: Coloring and Matchings in Graphs

OUTLINE

(References: Wells: 157, 159, Rosen: 10.2, 10.8)

1. Coloring

(a) Motivation: Scheduling Problem

Goal: Schedule a number of student exams so no student has a time conflict.

- i. Make a graph where each vertex is an exam
- ii. Put an edge between vertices if some student has both exams
- iii. So what is a proper coloring?
- (b) Chromatic Number

Typical goal: Use as few colors as needed.

PROBLEM 1. Find the chromatic number of the following: K_n and C_n and W_n $(n+1 \ vertices)$ and Trees

PROBLEM 2. Wells 159.2.2 (coloring bipartite)

(c) Exercises

Section 10.8: 5 - 11 (Finding chromatic number)

Section 10.8: 12 - 13, 16 - 20

2. Matching (10.2)

(a) One Motivation: Match Jobs to workers (jobs are side that needs to be covered, can miss some workers).

PROBLEM 3. Create problem from students in class, along with jobs to perform. Is there a complete matching from students to jobs? (or Example 14 (p. 692))

- (b) Setup.
 - i. Have graph with bipartition (V_1, V_2) in a graph.
 - ii. Considering just matchings (i.e no edges can touch)
 - iii. Issue: Can you cover V_1 or not? (pick one of side to cover)
- (c) Old fashioned marriage example (between men and women)
- (d) Try to find Neccessary conditions for having such a matching (i.e. If there is a a matching that covers V_1 , what must be true).
- (e) Statement Hall's Marriage Theorem. Prove neccessity of condition; leave other direction open
- (f) Examples

i.

PROBLEM 4. Consider the graph on the board (with 3 vertices on the left). Does it satisfy the condition in Hall's Theorem? If not add, some edges so that it does satisfy the condition.

- ii. Do more.
- (g) Exercises (10.2)
 - i. Exercises: 27 30
 - ii. Exercises (hard??): 31 33