CSI 35 LECTURE NOTES (Ojakian)

Topic 10: More Introductory Graph Theory

OUTLINE

(References: Wells: 152 - 156, Rosen: 10.2, 10.3, 10.4)

- 1. Representing Graphs on Computer
- 2. Subgraphs, Isomorphism, Connectivity

1. Computer Graph Representation

- (a) Draw basic example on board for both below.
- (b) Vertex list representation

PROBLEM 1. Enter a graph into Python using list representation and plot it. Also list and count the number of edges.

(c) Matrix Representation (of simple graphs) by adjacency matrix.

One of the problems in Good Will Hunting!

PROBLEM 2. Get the adjacency matrix of the last graph using Python.

PROBLEM 3. Enter a graph into Python using adjacency matrix and plot it.

2. Subgraphs

- (a) In general in math: Consider subobjects of an object (ex: subset of set)
- (b) Subgraphs and Induced Subgraphs

3. Isomorphism

- (a) Definition
- (b) Invariants: Number of vertices and edges, degree sequence, etc.

PROBLEM 4. What are other invariants?

(c)

PROBLEM 5. Wells Exercise 155.1.4.

And try some graphs in Sage.

4. Connectivity Issues

How reliable is the network?

- (a) Connected or not?
- (b) If disconnected: What are the connected components?
- (c) Define vertex connectivity (κ). Another graph invariant.
 - i. Examples: Cycles, Trees, Complete Graphs

5. An application and a simulation

Small world phenomena (6 degrees of separation ...).

PROBLEM 6. Create a random graph that simulates the world and its connections, and see what the degree of separation is.

6. Exercises

- (a) Section 10.2. Subgraphs. 35a, 36, 50 53
- (b) Section 10.2. Degree Sequences. 38, 39 (not e), 40 43.
- (c) Section 10.3. Adjacencey list and matrix. 1 15, 29, 50
- (d) Section 10.3. Isomorphism. 38 48, 49, 58 63