CSI 35 LECTURE NOTES (Ojakian)

Topic 9: Introduction to Graph Theory

OUTLINE

(References: Wells: 152 - 156, Rosen: 10.1, 10.2)

1. Basic terminology of graph theory

1. Graph Definition (10.1)

- (a) Definition: Simple Graph
 - i. Example 1: Friendship Network or Acquantanceship Graph
 - ii. Vertices = Nodes
 - iii. Edges give "adjacency"
- (b) Definition: Multi-Graphs
 - i. Example 10: Road Network
- (c) Definition: Directed Graphs
 - i. Edges = Arcs
 - ii. Example 5: Web Graph
 - iii. Example 8: Precedence Graph for programs.

2. Graph Terminology (10.2)

- (a) Connected versus Disconnected
- (b) Neighbor and neighborhood (i.e. "open" neighborhood)
- (c) Degree of vertex (and out-degree and in-degree in directed graph)
- (d) Handshaking Lemma
 - PROBLEM 1. Demonstrate and prove the Handshaking Lemma.
 - PROBLEM 2. In any simple graph, how many odd degree vertices are there?

PROBLEM 3. What is the similar lemma for directed graphs, that connects outdegree and indegree to the number of edges? Prove it.

3. Some Special Graphs

- (a) Cycle (C_n)
- (b) Path (P_n)
- (c) Complete (K_n)
- (d) Complete bipartite $(K_{a,b})$
- (e) Wheel (W_n) . Note has n+1 vertices.

PROBLEM 4. How many edges are in K_n ? (exercise 481 from Finan) Give a proof by induction. Also can prove by combinations.

(f) Bipartite

PROBLEM 5. Wells Exercise 153.3.3 (identifying bipartite graphs).

(g) Tree (connected and acyclic). We'll return to.

4. Exercises

- (a) Section 10.1: 7-9. Ignore instructions in book. Instead:
 - i. How many arcs are there?
 - ii. What is the indegree and outdegree of each vertex?
- (b) Section 10.1: 20 (not f), 23, 24, 30, 35
- (c) Section 10.1: 33 (marriage graph). How change for same-sex marriages also included?
- (d) Section 10.2: 1 10, 12, 17, 18*, 37
- (e) Section 10.2: 19 a bet you're guaranteed to win! ...
- (f) Section 10.2. Bipartite. 21 25, 26 (not d)