CSI 35 LECTURE NOTES (Ojakian)

Topic 7: Equivalence Relations

OUTLINE

(References: Wells 51 - 53, 55 - 59, 117, 129, 130, 132 - 137; Rosen: 9.5)

- 1. Equivalence Relations
- 2. Partitions

1. Equivalence Relations

- (a) Intuitive idea: Want to ignore some aspects of the situation, and say that objects are equivalent for our purposes if certain conditions are met.
- (b) Less mathy example: Card game where cards are equivalent if same color (say for some game)
- (c) Everyday example: kids at school are equivalent if they are the same age (say for arranging classes)
- (d) Example 4 (section 9.5, p. 640). If just care about length. Check next properties of def.
- (e) DEF: Binary relation which is reflexive, symmetric, and transitive.

(f)

PROBLEM 1. Find 2 different equivalence relations on the set $\{a, b, c\}$.

- (g) Example 7 (section 9.5, p.641). Non-equivalence relation |x-y| < 1
- (h) Exercise 7 (section 9.5, p.646). Equivalence relation of truth.

(i)

PROBLEM 2 (Checking if equivalence relation). Do Wells 129.2.2 and 129.2.9 (all of 129.1 to 129.9 good)

PROBLEM 3. Prove that for any n, congruence mod n, is an equivalence relation.

2. Partitions

- (a) Example: Wells 117.1.13.
- (b) Do Wells 117.1.9.
- (c) Example: Congruence mod n partition.

3. Equivalence relations versus Partitions

Example: Congruence mod n.

- (a) Equivalence Class of an element x: [x].
 - i. Fact: If x and y are in the same equivalence class, then [x] = [y].
- (b) From Equivalence Relation to Partition: via Quotient Sets.
 - i. Example: Wells 132.2.2
- (c) From Partition to Equivalence Relations: being in the same piece.
 - i. Example: Take any finite equivalence relation.
 - ii. Example: Use the partition that we got in Wells 132.2.2.
- (d) Theorem 2 (Section 9.5, page 645): The fundamental theorem relating Partitions to Equivalence Relations.

4. More examples

- (a) Using equivalence to capture desired accuracy: Equivalence relation on R, making two numbers equivalent if their decimal expansions agree down to and including the 1/100s place.
- (b) Make up one: Choose parameters for people, so each person is a list of attributes. Then choose what you care about and what you don't care about.
- (c) Section 9.5: 1 7