CSI 35 LECTURE NOTES (Ojakian)

Topic 4: Recursive Definitions and Programs

OUTLINE

(References: Wells sections 105-107, 124, 125; Rosen: 5.3, 5.4)

- 1. Recursive Definitions
- 2. Recursive Programs

1. Recursive Functions

- (a) To define: Need a basis value. Need Recursive definition
- (b) Example: Define the function $F(n) = 2^n$ without using exponentiation, instead using recursion.
- (c) Example (we'll make up!). Calculate some values, given the following definition.
 - i. g([class chooses value]) = [class chooses number]
 - ii. g(n+1) = [class chooses expression with arithmetic and g(n)]

2. Programming Recursive Functions

- (a) Program the above using their recursive definitions (think: start at input value, and move to the basis value)
- (b) Program them iteratively (think: start at the basis value, and move to the input value)
- (c) For both: Can put in print statements to see operation.

3. Well-defined?

- (a) Missing basis value (run related program).
- (b) Circular recursion (ex: F(n) = ...F(n)...; run related program).
- (c) Fibinacci: First do with one basis value. Then fix it.
- (d) Collatz-like functions. Well-defined recursion not always clear! (2 toy examples, then serious one ...)
 - i. Half an even and double an odd.
 - ii. Half an even and minus 1 from an odd.
 - iii. The serious example based on Collatz sequence: Wells 106.1.2 (page 160). Depends on an open question ...

4. Kinds of Problems

- (a) Given a recursive definition, evaluate at various values (as we did above with g).
- (b) Given a known function, find a recursive definition for it (as we did above with F).
 - i. Another Example: Give a recursive definition for factorial, then program it.
 - ii. Another example: Find a recurrence for C(n,k) ... tricky! (probably skip... but can see Wells Theorem 125.5 on page 192).
- (c) Given a recursive definition, find a non-recursive definition for it ("solving the recurrence").
 - i. This is key point, since can often express an idea with recursion quickly.
 - ii. However it can be very hard to solve ... (we'll only do the easy ones!). For example: state solution to Fibbonnaci.
- (d) Examples of solving a recurrence.
 - i. Solve f(0) = 0 and f(n+1) = 5 + f(n)

ii. Solve
$$g(2) = 1$$
, $g(n+1) = \begin{cases} g(n) \text{ if n even} \\ g(n) + 1 \text{ otherwise} \end{cases}$

5. Recursively defined sets

- (a) Example 5 (contains 3 and closed under +)
- (b) Strings over an alphabet (Definition 1, page 370)
 - i. Consider alphabet $\{0,1\}$
 - ii. Consider alphabet $\{A, B, \dots, Z\}$
- (c) Example: Give a recursive definition of the multiples of 5 (including zero, and negatives)
- (d) Example: Give a recursive definition of the set of positive integers **not** divisible by 5.