
CSI 35 LECTURE NOTES (Ojakian)

Topic 4: Recursive Definitions and Programs

OUTLINE
(References: Wells sections 105-107, 124, 125; Rosen: 5.3, 5.4)

1. Recursive Definitions

2. Recursive Programs

1. Recursive Functions

(a) To define: Need a basis value. Need Recursive definition

(b) Example: Define the function F (n) = 2n without using exponentiation, instead
using recursion.

(c) Example (we’ll make up!). Calculate some values, given the following definition.

i. g([class chooses value]) = [class chooses number]

ii. g(n + 1) = [class chooses expression with arithmetic and g(n)]

2. Programming Recursive Functions

(a) Program the above using their recursive definitions

(think: start at input value, and move to the basis value)

(b) Program them iteratively

(think: start at the basis value, and move to the input value)

(c) For both: Can put in print statements to see operation.

3. Well-defined?

(a) Missing basis value (run related program).

(b) Circular recursion (ex: F (n) = ...F (n)...; run related program).

(c) Fibinacci: First do with one basis value. Then fix it.

(d) Collatz-like functions. Well-defined recursion not always clear! (2 toy examples,
then serious one ...)

i. Half an even and double an odd.

ii. Half an even and minus 1 from an odd.

iii. The serious example based on Collatz sequence: Wells 106.1.2 (page 160).
Depends on an open question ...

1



4. Kinds of Problems

(a) Given a recursive definition, evaluate at various values (as we did above with g).

(b) Given a known function, find a recursive definition for it (as we did above with F ).

i. Another Example: Give a recursive definition for factorial, then program it.

ii. Another example: Find a recurrence for C(n, k) ... tricky! (probably skip...
but can see Wells Theorem 125.5 on page 192).

(c) Given a recursive definition, find a non-recursive definition for it (“solving the
recurrence”).

i. This is key point, since can often express an idea with recursion quickly.

ii. However it can be very hard to solve ... (we’ll only do the easy ones!). For
example: state solution to Fibbonnaci.

(d) Examples of solving a recurrence.

i. Solve f(0) = 0 and f(n + 1) = 5 + f(n)

ii. Solve g(2) = 1, g(n + 1) =

{
g(n) if n even

g(n) + 1 otherwise

5. Recursively defined sets

(a) Example 5 (contains 3 and closed under +)

(b) Strings over an alphabet (Definition 1, page 370)

i. Consider alphabet {0, 1}
ii. Consider alphabet {A,B, . . . , Z}

(c) Example: Give a recursive definition of the multiples of 5 (including zero, and
negatives)

(d) Example: Give a recursive definition of the set of positive integers not divisible by
5.

2


