HW #1

Kerry Ojakian's CSI 35 Class

Due Date: Thursday September 4 (beginning of class)

General Instructions:

- Homework must be stapled, be relatively neat, and have your name on it.
- Use tutors, work with other students, but ... don't copy!

The Assignment

- 1. Read the first 3 sections of the Krantz proof article (at webpage next to Topic 1). Write a brief summary of it (a page). Write about one point you agree with and one point you disagree with, and why. Do **not** use any AI assistance. Attach your typed response.
- 2. Suppose variables x and y already have values assigned to them. Write code that swaps the values between x and y (using an extra variable besides x and y).
- 3. Define a function which takes one numerical input. If the input is negative, it returns 0; otherwise it just returns back the same input. Graph this function.

Note: This function is famous in the AI neural net work; called the "ReLU" function.

4. Suppose L is a list of positive integers, and b is a boolean variable. Write code that sets b to True if every entry in the list is even, and False otherwise.

5. Some day we will prove that for all positive integers n, $1+2+\cdots+n=\frac{n(n+1)}{2}$. Write a program that verifies this claim for n such that $1 \le n \le 1000$.

6. Write a program that finds the sum of the first n odd positive integers; for example, if n=2, the program should calculate 4, since 1+3=4. Make conjecture about the value of this sum (no need to prove it! however, use data from your programs as evidence of your conjecture).

7. Prove that the sum of any three odd integers is odd.

8. Prove or disprove: If a|bc then a|b or a|c.

9. Consider the following program:

if
$$x > 9$$
:
 $x = 9$
elif $x < -9$:
 $x = -9$
else:
 $x = 0$

- (a) Suppose the initial assertion is that x = -70. Determine what the final value of x will be, and prove it.
- (b) What are all the possible final values of x? Prove it (Hint: Use cases)

10. Suppose n is an integer. Prove n is odd if and only if n + 101 is even.

11.	We know that the product of 2 consecutive positive integers is divisible by 2, and that the product of any 3 consecutive positive integers is divisible by 3. Make a conjecture about k integers. Prove it!
12.	Prove that a right triangle $cannot$ have all its side lengths equal to prime numbers (Hint: use Pythagorean Theorem and proof by contradiction).
13.	A perfect square is an integer that is equal to the square of another integer; for example 9 is a perfect square because $9 = 3^2$, but 18 is <i>not</i> a perfect square.
	(a) Prove that if m and n are both perfect squares, then nm is also a perfect square.
	(b) Prove or disprove: The sum of two perfect squares is a perfect square.