Kerry Ojakian's GRASCan 2024 Exercises

Sources for some exercises:

An Invitation to Pursuit-Evasion Games and Graph Theory by Anthony Bonato (2020).

Cop Number.

c(G) = cop number of G.

- 1. What is the cop number of the path?
- 2. What is the cop number of the k disjoint paths?
- 3. Suppose c(G) = 3 and c(H) = 5. Then what is $c(G \cup H)$?
- 4. Find the cop numbers of each of the following families (be aware, that your answers may need to depend on the value of the parameter ...):
 - (a) K_n (complete graph on n vertices)
 - (b) C_n (cycle on n vertices)
 - (c) $K_{s,t}$ (complete bipartite graph with a size s independent set and a size t independent set)
- 5. What is the cop number of the 3 by 3 grid (i.e. with 9 vertices)?
- 6. What is the cop number of the a by b grid.

Cop-win Graphs.

- 7. What are the cop-win graphs with no cycles?
- 8. Give an example of a cop-win graph that contains a cycle.
- 9. Find all the cop-win graphs, up to isomorphism, of order at most 4. [Bonato 2020]
- 10. Give two different cop-win orderings of the path $P_4 = (1, 2, 3, 4)$.
- 11. How many cop-win orderings does K_n have?
- 12. How many cop-win orderings does C_n have?

More on Cops and Robber.

- 13. What is the capture time of the path P_n ? (i.e. path with n vertices)
- 14. Give examples of graphs H and G so that H is an *induced* subgraph of G, and such that c(H) < c(H).

- 15. Give examples of graphs H and G so that H is an *induced* subgraph of G, and such that c(H) = c(H).
 - Ok, if you were cheap, now find an H which is a proper induced subgraph!
- 16. Give examples of graphs H and G so that H is a subgraph (not necessarily induced!) of G, and such that c(H) > c(H).
- 17. Give examples of graphs H and G so that H is an *induced* subgraph of G, and such that c(H) > c(H). [Bonato 2020]

Cops with attacking robbers.

cc(G) = the minimum number of cops need to catch an attacking robber, on G.

- 18. What is $cc(P_n)$?
- 19. Is there a graph with attacking cop number 1?
- 20. What is $cc(C_6)$ and $cc(C_7)$?
- 21. Consider $cc(C_6)$ again. What is a more general upper bound on cc(G)?
- 22. What is an easy bound on cc(G) in terms of c(G)?

Graph Burning.

- b(G) = burning number of G.
 - 23. Find the burning number of the following paths: P_n , for $3 \le n \le 10$
 - 24. Find the burning number of K_n (don't miss the cheap case!).
 - 25. Find $b(K_{a,b})$.
 - 26. What is the worst possible burning number and a graph that achieves it? (this question is easy as long as you don't assume what you may be assuming ...)
 - 27. Find the burning number of P_9 . Then find the burning number of the disjoint union of P_4 and P_5 (i.e. a path-forest with 2 paths).
 - 28. Considering the last question, do you think that if n = a + b, then the burning number of P_n is the same as the burning number of the disjoint union of P_a and P_b? (Consider an example with n = 9, but a different a and b from the last exercise.)
 - 29. Find an example of a graph G with a subgraph H such such that b(H) < b(G).

- 30. Can you do the last question if the subgraph H is required to be spanning? (i.e. you keep all the vertices, but may lose some edges)
- 31. Give an example of a graph G with an *induced* subgraph H such such that b(H) > b(G). [Bonato 2020]

Burning Hypergraphs.

- 32. What is the **lazy burning number** of the following hypergraph: 3-uniform sunflower (single intersection) with 4 petals? *k*-uniform hypergraph with 4 petals?
- 33. What is the **burning number** of the following hypergraph: 3-uniform sunflower (single intersection) with 4 petals? k-uniform hypergraph with 4 petals?
- 34. What is the *lazy burning number* and the *burning number* of the trivial hypergraph: one hyperedge containing all the vertices?
- 35. Find a hypergraph on n vertices such that the the lazy burning number and the burning number are both n.
- 36. What is the *lazy burning number* of any ordinary graph? (i.e. ordinary means 2-uniform).

Consider disconnected graphs ...

Cleaning.

brush(G) = minimum number of brushes needed to clean the graph.

- 37. What is the brush number of a path? of a cycle?
- 38. What is $brush(K_n)$?
- 39. What is the maximum possible brush number of a graph on n vertices? (connected or disconnected)

Watch out ...

Cat Herding.

cat(G) = number of edges that must be removed from G.

- 40. What is the cat-herding number P_4 ?
 - Find a bad sequence of edge-deletions which takes more time than $cat(P_4)$.
- 41. What is the smallest possible value of the herding number for a graph on n vertices?

- 42. What is a very cheap upper bound on the herding number?
- 43. What is cat-herding number for for K_2, K_3, K_4 , and K_5 ?

Zero Forcing.

- z(G) = minimum number of colored start vertices in G, to force everything colored.
 - 44. What is the zero-forcing number of C_n ?
 - 45. Consider C_6 . Color a set of vertices which does **not** zero-force C_6 , even though the number of colored vertices is larger than $z(C_6)$.
 - 46. What is the zero-forcing number of a path?
 - 47. What is $z(K_n)$?

"Contrained" Variations.

Each piece can move/propagate/etc only once!

- 48. What is the *constrained* cop number of P_5 ? Of P_7 ? Of P_n ?
- 49. What is another name (a very well known graph parameter!) for the constrained cop number?
- 50. What is the *constrained* zero forcing number of P_5 ? Of P_7 ? Of P_n ?

"Invisible" Variations.

The piece being pursued is invisible!

- 51. What is the cop number of K_n if the robber is invisible?
- 52. What is the invisible cop number of the 4 by 5 grid?
- 53. Find some graphs where the invisible cop number is the same as the usual cop number.
- 54. In cops and robber, we might consider the case in which the robber is invisible. Why might we **not** consider the case in which the cops are invisible?
- 55. Suppose the robber is invisible and the cops are constrained (also called the "deduction number"). How many cops are needed to win on P_5 ?

 (watch out note that it is not just the domination number!)
- 56. Referring to the last problem, what is the deduction number of P_n ? Look back at contrained zero-forcing; what is the connection?