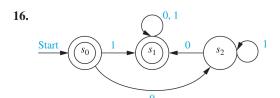
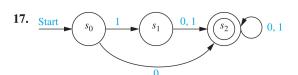
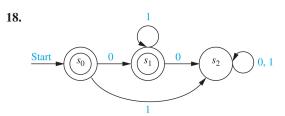
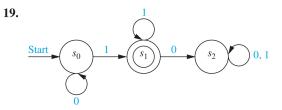
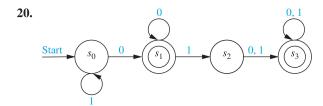
s_0 goes just to s_1 and s_2 goes just to s_4 on input of 1 in the nondeterministic machine; and the set $\{s_1, s_4\}$ goes to $\{s_3\}$ on input of 0, because s_1 and s_4 both go to just s_3 on input of 0 in the deterministic machine. All subsets that are obtained in this way are included in the deterministic finite-state machine. Note that the empty set is one of the states of this machine, because it is the subset containing all the next states of $\{s_3\}$ on input of 1. The start state is $\{s_0\}$, and the set of final states are all those that include s_0 or s_4 .

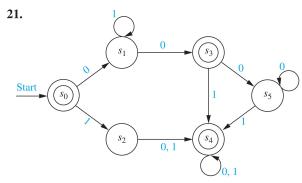

Exercises

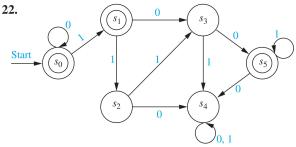

- **1.** Let $A = \{0, 11\}$ and $B = \{00, 01\}$. Find each of these sets.
 - **a**) *AB*
- **b**) *BA*
- c) A^2
- **d**) B^3
- **2.** Show that if A is a set of strings, then $A\emptyset = \emptyset A = \emptyset$.
- **3.** Find all pairs of sets of strings A and B for which $AB = \{10, 111, 1010, 1000, 10111, 101000\}.$
- 4. Show that these equalities hold.
 - a) $\{\lambda\}^* = \{\lambda\}$
 - **b)** $(A^*)^* = A^*$ for every set of strings A
- **5.** Describe the elements of the set A^* for these values of A.
 - **a**) {10}
- **b**) {111}
- **c**) {0, 01}
- **d**) {1, 101}
- **6.** Let *V* be an alphabet, and let *A* and *B* be subsets of V^* . Show that $|AB| \le |A||B|$.
- 7. Let V be an alphabet, and let A and B be subsets of V^* with $A \subseteq B$. Show that $A^* \subseteq B^*$.
- **8.** Suppose that A is a subset of V^* , where V is an alphabet. Prove or disprove each of these statements.
 - a) $A \subseteq A^2$
- **b)** if $A = A^2$, then $\lambda \in A$
- c) $A\{\lambda\} = A$
- **d**) $(A^*)^* = A^*$
- e) $A^*A = A^*$
- **f**) $|A^n| = |A|^n$
- Determine whether the string 11101 is in each of these sets.
 - a) $\{0, 1\}^*$
- **b**) {1}*{0}*{1}*
- **c**) {11} {0}*{01}
- **d**) {11}*{01}*
- e) {111}*{0}*{1}
- **f**) {11, 0} {00, 101}
- **10.** Determine whether the string 01001 is in each of these sets.
 - a) $\{0, 1\}^*$
- **b**) {0}*{10}{1}*
- $\mathbf{c}) \ \{010\}^*\{0\}^*\{1\}$
- **d**) {010, 011} {00, 01}
- e) $\{00\}\{0\}^*\{01\}$
- **f**) {01}*{01}*
- **11.** Determine whether each of these strings is recognized by the deterministic finite-state automaton in Figure 1.
 - **a**) 111
- **b**) 0011
- **c)** 1010111
- **d**) 011011011
- **12.** Determine whether each of these strings is recognized by the deterministic finite-state automaton in Figure 1.
 - **a**) 010
- **b**) 1101
- **c**) 11111110
- **d**) 010101010
- **13.** Determine whether all the strings in each of these sets are recognized by the deterministic finite-state automaton in Figure 1.
 - **a**) $\{0\}^*$
- **b**) {0} {0}*
- **c**) {1} {0}*

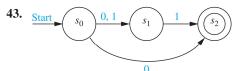

- **d**) {01}*
- **e**) $\{0\}^*\{1\}^*$
- **f**) {1} {0, 1}*

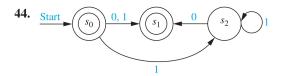

- **14.** Show that if $M = (S, I, f, s_0, F)$ is a deterministic finite-state automaton and f(s, x) = s for the state $s \in S$ and the input string $x \in I^*$, then $f(s, x^n) = s$ for every nonnegative integer n. (Here x^n is the concatenation of n copies of the string x, defined recursively in Exercise 37 in Section 5.3.)
- **15.** Given a deterministic finite-state automaton $M = (S, I, f, s_0, F)$, use structural induction and the recursive definition of the extended transition function f to prove that f(s, xy) = f(f(s, x), y) for all states $s \in S$ and all strings $x \in I^*$ and $y \in I^*$.


In Exercises 16–22 find the language recognized by the given deterministic finite-state automaton.









- 23. Construct a deterministic finite-state automaton that recognizes the set of all bit strings beginning with 01.
- 24. Construct a deterministic finite-state automaton that recognizes the set of all bit strings that end with 10.
- 25. Construct a deterministic finite-state automaton that recognizes the set of all bit strings that contain the string 101.
- 26. Construct a deterministic finite-state automaton that recognizes the set of all bit strings that do not contain three consecutive 0s.
- 27. Construct a deterministic finite-state automaton that recognizes the set of all bit strings that contain exactly three 0s.
- 28. Construct a deterministic finite-state automaton that recognizes the set of all bit strings that contain at least three 0s.
- 29. Construct a deterministic finite-state automaton that recognizes the set of all bit strings that contain three consecutive 1s.
- 30. Construct a deterministic finite-state automaton that recognizes the set of all bit strings that begin with 0 or
- 31. Construct a deterministic finite-state automaton that recognizes the set of all bit strings that begin and end with 11.

- 32. Construct a deterministic finite-state automaton that recognizes the set of all bit strings that contain an even number of 1s.
- 33. Construct a deterministic finite-state automaton that recognizes the set of all bit strings that contain an odd number of 0s.
- 34. Construct a deterministic finite-state automaton that recognizes the set of all bit strings that contain an even number of 0s and an odd number of 1s.
- 35. Construct a finite-state automaton that recognizes the set of bit strings consisting of a 0 followed by a string with an odd number of 1s.
- **36.** Construct a finite-state automaton with four states that recognizes the set of bit strings containing an even number of 1s and an odd number of 0s.
- 37. Show that there is no finite-state automaton with two states that recognizes the set of all bit strings that have one or more 1 bits and end with a 0.
- **38.** Show that there is no finite-state automaton with three states that recognizes the set of bit strings containing an even number of 1s and an even number of 0s.
- **39.** Explain how you can change the deterministic finite-state automaton M so that the changed automaton recognizes the set $I^* - L(M)$.
- **40.** Use Exercise 39 and finite-state automata constructed in Example 6 to find deterministic finite-state automata that recognize each of these sets.
 - a) the set of bit strings that do not begin with two 0s
 - b) the set of bit strings that do not end with two 0s
 - c) the set of bit strings that contain at most one 0 (that is, that do not contain at least two 0s)
- **41.** Use the procedure you described in Exercise 39 and the finite-state automata you constructed in Exercise 25 to find a deterministic finite-state automaton that recognizes the set of all bit strings that do not contain the string 101.
- **42.** Use the procedure you described in Exercise 39 and the finite-state automaton you constructed in Exercise 29 to find a deterministic finite-state automaton that recognizes the set of all bit strings that do not contain three consecutive 1s.

In Exercises 43–49 find the language recognized by the given nondeterministic finite-state automaton.

