Kerry Ojakian's CSI 35 Class Class Assignment #4 (and 5)

1.	We recursively define	f	as follows:	f(1)) = 5	and	f(n +	- 1) =	10 ·	f(n) + 5.	Evaluate	the
	following											

(a) f(1)

(c) f(4)

(b) f(3)

(d) Describe f(n) in words without recursion

2. We recursively define g as follows: g(1) = 1 and $g(n+1) = (g(n))^2 + g(n)$. Evaluate the following

(a) g(2)

(c) g(4)

(b) g(3)

3. We recursively define f as follows: f(0) = 9 and f(n+1) = -f(n). Evaluate the following

(a) f(3)

(c) f(1000)

(b) f(4)

4. Let $G(n) = 7^n$, defined on integers $n \ge 0$. Find a recursive definition for G.

5.	Give a recursive definition of the sequence a_n , $n \ge 1$, if $a_n = 8n$.
6.	Let $F(n)$ be the number of strings of length n using just the letter b . Find a recursive definition for $F(n)$ (Warning: This question is so simple, it might be tricky!).
7.	Let $F(n,k)$ be the number of strings of length n using letters in $\{a,b\}$ with exactly k b 's Find a recursive definition for $F(n,k)$.
8.	Let $F(n,k)$ be the number of strings of length n using letters in $\{a,b,c\}$ with exactly k b 's Find a recursive definition for $F(n,k)$.
9.	Give a recursive definition of the set of positive odd integers.
10.	Give a recursive definition of the set of even integers (including zero and the negatives).

11. Consider the set S defined by $14 \in S$ and $s + t \in S$ whenever $s \in S$ and $t \in S$. Show that every element of S is even.

12. Let g be defined recursively by g(0) = g(1) = 7 and $g(n+1) = 2 \cdot g(n) + g(n-1)$. Prove that g(n) is always odd.

- 13. Define a subset of binary strings S as follows (implicit operation is concatenation): $101 \in S$ and if $x \in S$ then $x01 \in S$ and $x10 \in S$.
 - (a) List all the length 7 binary strings in S
 - (b) Prove that the strings in S all have one more 1 than 0.