Kerry Ojakian's CSI 35 Class Class Assignment #1

1. Consider summing two odd integers. What is your conjecture about the result? (even or odd or something else?) Prove it.

2. Prove that the product of any two consecutive integers is even.

3. Prove or disprove: If n is an odd integer then $\frac{n-1}{2}$ is odd.

4. Prove that for all positive integers n, n^3 is odd if and only if n is odd.

5.	Prove that the product of any 3 consecutive positive integers is divisible by 3.
6.	Prove that for all positive integers n , n^2 is odd if and only if n is odd.
7.	Prove that if $A B$ and $B C$, then $A C$.

8.	One of the following is true, and the other false (notice they are converses of eachother). Find a counter-example to the false claim, and prove the true one.
	(a) If $ab c$, then both $a c$ and $b c$.
	(b) If both $a c$ and $b c$, then $ab c$.
9.	Prove or disprove: If $a b$ then $a^2 b^2$.
10.	Prove that 20 is <i>not</i> a perfect square (use cases).
11.	Prove that if x and y are integers and xy is even, then x is even or y is even (Hint: Use Proof-by-Contradiction)

12. Consider the following program:

if
$$x > 5$$
:
 $z = x + 1$
else:
 $z = x - 1$

Suppose the initial assertion is that x = 3. Determine what the final value of z will be, and prove it.

13. Consider the following program:

for
$$x$$
 in range(1, 1000): $y = y + 3$

Given that the initial value of y is even, prove that the final value is odd.

14. Consider the following program:

$$a = 1$$

while $a > 0$:
 $a = a + 1$

Prove that the program does not terminate.