CSI 30 LECTURE NOTES (Ojakian)

Topic 11: Divisibility, Modular Arithmetic, and Crypto

OUTLINE

(References: 4.1, 4.6)

- 1. Divisibility
- 2. Modular Arithmetic
- 3. Cryptography (part 1)

1. Divisibility

- (a) Divisible: Meaning of x|b. "x divides b"
 - i. x is a "factor" (or "divisor") of b.
- (b) Theorem 1 (page 252). Do proof.

2. Modular Congruence

- (a) Example: time on a 24 hour clock: after 23h, what time is it?
- (b) Example: memory in C++. For example what is: 65535 + 1?? (for an unsigned short int we only have 2 bytes)
- (c) DEF ("congruence" relation): $a \equiv b \pmod{m}$

Note: distinct from "mod" function (book notation we avoid). And being precise, this is a relation $Z \times Z$.

- (d) Equivalent ways to think about congruence.
 - i. Theorem 3 (p. 254). Same remainders
 - ii. Theorem 4 (p. 255). Can step between (draw number line)
 - iii. For congruence mod m, consider the representatives $Z_m = \{0, 1, \dots, m-1\}$.

3. Modular Arithmetic

Basic moral: Work in Z_m and most all usual rules with addition, subtraction, and multiplication work (avoid standard division ...)

- (a) Addition and multiplication rule (Theorem 5 p. 255)
- (b) Substitution rule (Corollary 2 page 256)
- (c) Other typical properties (page 257).
 - i. Associativity and Commutativity (i.e. respect order of operations between addition and multiplication, but otherwise can change the order)
 - ii. Distributivity
 - iii. Additive Inverses. Section 4.1: Exercise 48 (last part)
 - iv. Multiplicative Inverses? Wait!
- (d) Watch out! Section 4.1: Exercise 43.

4. Cryptography - Basic setup

- (a) Alice wants to send a secret message to Bob
- (b) But Eve is eavesdropping.
- (c) Competing goals:
 - i. Making Codes.

Alice and Bob want to devise a scheme for sending secret message that Eve cannot gain access to.

ii. Breaking Codes.

Eve wants to figure out how to crack the secret and read the hidden message.

- (d) Terminology
 - i. Plaintext: The message to be sent (from Alice to Bob), in original form.
 - ii. Encryption: Putting plaintext into coded form (Alice does this).
 - iii. Decryption: Determining plaintext from coded message (Bob does this); i.e. the inverse of the encryption function.
- (e) To use mathematics:
 - i. Use some method for converting natural language to numbers (this is simple translation! not encryption!)
 - ii. Example: A = 0, B = 1, etc

5. Cryptography - Shift Cipher

Simple example. More serious one at later topic.

- (a) Pick a shift value k: 0 < k < 26.
- (b) Encryption: Letter x is mapped to $x + k \mod 26$
- (c) Decryption: Letter y is mapped to $y k \mod 26$
- (d) Example 5 (Section 4.6): Breaking a code.
- (e) Do group sending, with Alice, Bob, and Eve

6. Affine ciphers: better but they still suck! ...

(a) Example 3 in section 4.6

7. Exercises

- (a) Section 4.1: 2, 5, 6, 7, 8, 15 18
- (b) Section 4.1: 26 29 (where "mod" is the same as "%")
- (c) Section 4.1: 30 35, 52
- (d) Section 4.6: 1, 2, 3 (also give the result of the encryption BEFORE "translating the numbers back into letters")
- (e) Section 4.6: 4 13 (shift and affine ciphers)