CSI 30 LECTURE NOTES (Ojakian)

Topic 8: Algorithms

OUTLINE

(References: 3.1)

1. Algorithms/programs

1. Algorithms

- (a) An algorithm is a finite set of precise instructions for performing a computation.
- (b) Example: multiplication, division, etc.
- (c) Example (dumb): Given any input positive integer, repeatedly subtract 1 till the value is zero, then stop and return the current value (i.e. zero ...)

2. Basic Programming Constructs

- (a) Use pseudo code or actual code.
- (b) Assignment statements
- (c) Basic data structure: Lists
- (d) Conditional statements
- (e) For Loops
- (f) While Loops
- (g) Functions with return statement

3. Algorithms

PROBLEM 1. Supposing x and y are set to integers. Set z to the larger of x or y.

PROBLEM 2. Write the definition of a function which takes an integer n as input and returns n if n is negative, 0 if n is zero, and -n if n is positive (do with with a conditional statement, and without). Graph it.

PROBLEM 3. Write the definition of a function which takes two arguments, the first a negative integer s and the second a positive integer t. The function returns the sum of the even integers inbetween s and t (including s and t).

PROBLEM 4. Do one of the above for-loop questions with a while loop.

4. Programs Instead of Proofs?

(a)

PROBLEM 5. What do you think the sum of consecutive integers should be? Write a program to test your hypothesis.

PROBLEM 6. Write program to test the claim: The sum of evens is even (test all pairs of evens up to 100)

(b) Do our programs prove the claim? What are the issues?

5. Harder Questions...

- (a) Are there infinitely many prime numbers?
- (b) Are there infinitely many twin primes?
- (c) Test your hypothesis with a program.

6. Proofs on program correctness

- (a) One kind of question: Does the program always terminate?
- (b) Second kind of question: Given some initial assertion, verify some final assertion.

PROBLEM 7. Consider the following program:

```
y = 5
if y <= 5:
    z = x + 2*y
else:
    z = x - 2*y</pre>
```

Suppose the initial assertion is that x = 3. Then prove the final assertion that z = 13.

PROBLEM 8. Consider the following program:

```
x = 0
for k in range(1, n+1):
x = x + 2*k
```

Suppose the initial assertion is that n = 100. Then prove the final assertion that x = 10100.

PROBLEM 9. Consider the following program:

```
while x < 10000:
    if x % 7 == 0:
        x = x + 1
    else:
        x = x + 3</pre>
```

Prove that whatever integer the initial value of x is, the program terminates.

7. Classic Issues

- (a) Linear search versus binary search
- (b) Sorting: Bubble Sort and Insertion Sort
- 8. Exercises

```
Section 3.1: 3, 4*, 13, 14, 16*, 19, 23, 24* (where * means maybe hard ..)
```