CSI 30 LECTURE NOTES (Ojakian)

Topic 1: Introduction and Propositional Logic

OUTLINE

(References: 1.1, 1.2, 1.3)

- 1. Introduction
- 2. Propositional Logic
- 3. Applications and Terminology

1. Math and Computer Science

- (a) Discrete math versus other math
- (b) Computer programming mathematics in action
- (c) How do we make imprecise world precise for a machine? Logic! (our starting point)

2. General Mathematical Introduction

- (a) Basic development in mathematics:
 - i. Definition.
 - ii. Theorem (or Lemma or Claim or ...)
 - iii. Proof
- (b) Example:
 - i. How might you define the terminology "even" and "odd"?
 - ii. Theorem: The addition of two evens is even.
- (c) Example:
 - i. DEF: a Word is any finite sequence of the 26 letters from the English alphabet.
 - ii. DEF: Say a word is BRONX if its length is odd, its first letter is B and its last letter is X.
 - iii. DEF: Given any words, their *concatenation* is the formation of a single word by putting the words one after another.
 - iv. Theorems? Concatenating 2 BRONX words is BRONX? Etc?

3. Propositions

- (a) Proposition: sentence that declares a fact (is either true or false)
- (b) Examples: See Rosen (8th Ed): Section 1.1.2 (page 2)

4. Propositional Logic: Propositional Letters and Connectives

- (a) Makes thinking about propositions formal and precise
- (b) Use letters to represent propositions each can be true (T) or false (F)
- (c) Have connectives: OR, AND, NOT, IMPLICATION, EQUIVALENCE

- (d) Examples of connectives in English: See section 1.1.2 (pages 3 5, 7)
- (e) Consider some unusual examples:
 - i. Absurd implications! (page 8)
 - ii. Unusual OR: "I open the door OR you open the door"
- (f) Truth Table Definitions of connectives

(and do in Python, where implication is a function)

- (g) Question: When does order of the propositional variables matter?
- (h) DEF: The converse of an implication is ...

5. Propositional Logic: Compound Propositions

- (a) Truth Tables
- (b) Do it in Python

6. Propositional Logic: Terminology

- (a) Tautology
 - i. Example: $A \vee \neg A$
 - ii. Example: $A \to (A \lor B)$
- (b) Contradiction
 - i. Example: $X \wedge \neg X$
- (c) Consistent
 - i. Example: $(P \lor Q) \to (P \land Q)$

7. Propositional Equivalences

- (a) Example: $\neg \neg P$ equivalent to P
- (b) Example: $\neg (P \lor Q)$ equivalent to $\neg P \land \neg Q$
- (c) Rules
 - i. Double Negation: $\neg \neg P \equiv P$
 - ii. De Morgan's Law
 - iii. Implication equivalence: $A \to B \equiv \neg A \lor B$
 - iv. Equivalence (or if and only if): $A \leftrightarrow B \equiv (A \to B) \land (B \to A)$

8. Propositional Logic Applications

- (a) System Specification
 - i. Convert to propositional logic. Then find an assignment which makes the conjunction true.
 - ii. Do Example 4 and 5 in Section 1.2 (page 18)
- (b) Circuits
 - i. Do Example 10 in Section 1.2 (page 22)
 - ii. Do Example 11 in Section 1.2 (page 23)