Handout: RSA Encryption

BACKGROUND STEP - Each entity creates a public and a private key:

- 1. Pick 2 "large" prime numbers p and q such that $p \neq q$
- 2. Let m = (p-1)(q-1); let n = pq
- 3. Pick an integer e such that 1 < e < m such that e and m are relatively prime
- 4. Find the inverse of e modulo m (it is unique; call it d)
- 5. Your "public key" is the pair (n, e). Make it public.
- 6. Your "private key" is the pair (n, d). Keep it private!

TO SEND A MESSAGE:

- 1. Whatever message you have, encode it as a number in the agreed upon way. Suppose your message is the positive integer M.
- 2. Look up their public key; say it is (n, e).
- 3. Make sure M < n
- 4. Send $M^e \mod n$

TO DECODE A MESSAGE YOU ARE SENT:

- 1. Suppose your private key is (n,d) and you have received the message C < n
- 2. Find $C^d \mod n$
- 3. Miraculously it will be M.