HW #2

Kerry Ojakian's CSI 30 Class

Due Date: Tuesday October 28 (beginning of class)

General Instructions: Homework must be stapled, be relatively neat, and have your name on it. All work on this handout. Don't copy!

The Assignment

- 1. Suppose we are in the universal set $U = \{x \in Z \mid 1 \le x \le 15\}$. Let E be the even integers from U. Let $P = \{4, 5, 8, 9, 12, 13\}$. Let $Q = \{5, 6, 9, 10, 13, 15\}$. Find the following.
 - (a) $\overline{E} \cap P \cap \overline{Q}$

(b) $(E \cup \overline{Q}) \cap \overline{P \cup Q}$

- 2. (a) Suppose $X = \{2, 3, 5\}$. Find the power set of X.
 - (b) Suppose $Y = \{a \in Z \mid -10 < a < 10\}$. How many elements are in the power set of Y? (use an exponential expression to give your answer).

3. Prove that $A \cap \overline{A} = \emptyset$ for any set A (do it from the definitions).

4. Prove that $(A \cap B) \cup (A \cap \overline{B}) = A$ for sets A and B (do it using a membership table).

5. Prove that $A - B = A \cap \overline{B}$, for sets A and B (do it using Venn Diagrams).

- 6. Let $g(x) = 4 + 3x^2$. Evaluate g(2) and g(-2).
- 7. Consider the function f given by the following table.

x	2	4	6	10	15	17
f(x)	3	4	13	2	6	14

Use the table to evaluate each.

(a) f(2)

(b) f(10)

(a) $f^{-1}(14)$

(b) $f^{-1}(4)$

(a) $f^{-1}(2)$

- 8. Let f(x) = 2x and g(x) = x + 10.
 - (a) Find $(f \circ g)(5)$

(c) Find f(f(5))

(b) Find g(f(5))

- (d) Find $(g \circ g)(5)$
- 9. Given f(x) = 2x + 1 and $g(x) = x^2 + 3$, find and simplify the following.
 - (a) $(f \circ g)(3)$

(c) $(g \circ f)(x)$

(b) $(f \circ g)(x)$

(d) $(f \circ g \circ f)(x)$

- 10. For each pair of functions, check if they are inverses by verifying f(g(x)) = x and g(f(x)) = x.
 - (a) f(x) = 2x, g(x) = x + 2

(b) f(x) = 7 - x, g(x) = 7 - x

11. Show that f(x) = -3x + 1 and $g(x) = \frac{x-1}{-3}$ are inverses.

- 12. Let $A = \{0, 2, 4, 6, 8\}$ and $B = \{0, 1, 2, 3, 4, 5, 6\}$.
 - (a) Let the function $f: A \to B$ be defined by f(n) = n/2. Is f injective?
 - (b) Why is f not surjective? Is there any surjective function from A to B?

- 13. Let $A = \{0, 2, 4, 6, 8\}$ and $B = \{3, 4, 5, 6\}$.
 - (a) Let the function $h: A \to B$ be defined by:

$$h(0) = 6$$
, $h(2) = 5$, $h(4) = 4$, $h(6) = 3$, $h(8) = 6$.

Is h surjective?

(b) Why is h not injective? Is there any injective function from A to B?

14. Let $X = \{u \in Z \mid 1 \le u \le 100\}$ and $Y = \{u \in Z \mid 10 \le u \le 109\}$. Let the function $h: X \to Y$ be defined by h(n) = n + 9. Prove that h is bijective. Why does h have an inverse? What is $h^{-1}(109)$?

- 15. Let $X=\{u\in Z\mid 1\le u\le 10\}$. Let the function $f:X\to X$ be defined by $h(n)=\begin{cases} n+1 \text{ if } n \text{ is odd}\\ n/2 \text{ if } n \text{ is even} \end{cases}$
 - (a) Describe the range of h. Is h onto?
 - (b) Use the same definition for h, but now let $X = \{u \in Z \mid 1 \le u \le 100\}$. Describe the new range.

16. For each function $Z \times Z \to Z$, determine if it is i) onto?, ii) one-to-ont?, iii) bijective?

(a)
$$f(a,b) = a - b$$

(b)
$$g(x,y) = x^2 + x^4$$

17. Find two 2 by 2 matrices M and N such that $M \cdot N = N \cdot M$.

- 18. Consider the matrix $M = \begin{bmatrix} 11 & 2 & 8 & 9 \\ 6 & 4 & 13 & -1 \\ -7 & 5 & -3 & 0 \end{bmatrix}$
 - (a) What are the dimensions of M?
 - (b) What is the value at entry $M_{2,3}$
 - (c) Using the " $M_{i,j}$ " notation, name the entries which are negative.

19. Let $M = \begin{bmatrix} 1 & 12 & 0 & 9 \\ -6 & 0 & 3 & -1 \end{bmatrix}$ and $N = \begin{bmatrix} 11 & 2 & 8 & -9 \\ 0 & 4 & -2 & -1 \end{bmatrix}$ (a) Find M + N(b) Find M - N

- 20. Let $M = \begin{bmatrix} 1 & 2 \\ -6 & 0 \end{bmatrix}$ and $N = \begin{bmatrix} 3 & 2 \\ 0 & 4 \end{bmatrix}$
 - (a) Find $M \cdot N$

(b) Find $N \cdot M$