HW #1

Kerry Ojakian's CSI 30 Class

Due Date: Thursday Sept 18 (beginning of class)

General Instructions:

- Homework must be stapled, be relatively neat, and have your name on it.
- Use tutors, work with other students, but ... don't copy!

The Assignment

- 1. Read the first 3 sections of the Krantz proof article (at webpage next to Topic 3). Write a brief summary of it (a page). Write about one point you agree with and one point you disagree with, and why. Do **not** use any AI assistance. Attach your typed response.
- 2. Show that the following 2 propositions are logically equivalent: $A \leftrightarrow B$ and $(A \to B) \land (B \to A)$

- 3. Use De Morgan's laws to find the negation of each of the following statements.
 - (a) $\neg A \wedge B$
 - (b) BCC is in CUNY or BCC is not in NYC

- 4. Are these system specifications consistent?
 - If students are being graded, professors cannot teach.
 - If professors can teach, then students can learn.
 - If students can learn, then students are not being graded.

- 5. Determine the truth value of each of these statements if the domain consists of all integers
 - (a) $\forall x \ (x < 2x)$

(b) $\exists u \ (3u + 7 = 34)$

6. Let N(x) be the predicate: "x lives in NY".

Let B(y) be the predicate: "y lives in The Bronx".

Express each of the following statements in terms of N and B, quantifiers, and logical connectives. Let the domain consist of residents of humans.

(a) Someone lives in NY.

(b) Everyone who lives in The Bronx lives in NY.

7.	Prove that the sum of any three odd integers is odd.
8.	Prove or disprove: If $a bc$ then $a b$ or $a c$.
9.	Suppose n is an integer. Prove n is odd if and only if $n+101$ is even.
10.	We know that the product of 2 consecutive positive integers is divisible by 2, and that the product of any 3 consecutive positive integers is divisible by 3. Make a conjecture about k integers. Prove it!

11. Prove that a right triangle *cannot* have all its side lengths equal to prime numbers (Hint: use Pythagorean Theorem and proof by contradiction).

- 12. A **perfect square** is an integer that is equal to the square of another integer; for example 9 is a perfect square because $9 = 3^2$, but 18 is *not* a perfect square.
 - (a) Prove that if m and n are both perfect squares, then nm is also a perfect square.
 - (b) Prove or disprove: The sum of two perfect squares is a perfect square.

- 13. List the members of these sets.
 - (a) $\{x \mid x \text{ is a negative integer larger than 5}\}$
 - (b) $\{y \mid y \text{ is a an integer such that } y^2 = -y\}$

- 14. List the members of these sets.
 - (a) $\{x \mid x \text{ is a negative integer larger than 5}\}$
 - (b) $\{y \mid y \text{ is a an integer such that } y^2 = -y\}$
- 15. For each pair of sets, determine if one is a subset of the other (say which) or if neither is a subset of the other.
 - (a) A = set of positive integers divisible by 10. B = set of positive even integers.
 - (b) X = students below the age of 20. Y = students in college.
- 16. Find the cardinality of each set. If it is infinite, just say infinite.
 - (a) $\{1, 4, 2, 2\}$
 - (b) $\{x \mid x \text{ is an integer and } (x-2)(x+2)(x-\frac{1}{2})=0\}$
 - (c) The even integers larger than 100.
 - (d) $\{a, \{2, 3\}, \{\{4.8\}, x\}, z\}$
- 17. Suppose $A = \{1, 2, 3, 5, 6, 9\}$ and $B = \{6, 7, 8, 9\}$. Find the following.
 - (a) $A \cup B$

(c) A - B

(b) $A \cap B$

(d) B - A

18. Suppose $A = \{x, y, z\}$ and $B = \{2, 6\}$. Find the following.

- (a) $A \times B$
- (b) $B \times A$
- (c) $B \times B$

19. Suppose $X = \{1, 2, 5, 6, 7\}, Y = \{2, 3, 6, 7\}, \text{ and } Z = \{2, 6, 9\}.$ Find the following.

(a) $(X \cap Y) \cup Z$

(b) $X \cap (Y \cup Z)$

20. Suppose we are in the universe $U = \{x \mid x \text{ is an integer such that } 1 \leq x \leq 9\}$. Suppose $A = \{2, 4, 6, 8\}$ and $B = \{1, 3, 7\}$. Find the following and draw Venn Diagrams for each.

(a) \overline{A}

(b) \overline{B}