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Abstract. We collect recent results on the essential minimum of
height functions on arithmetic varieties.

1. Essential minimum of the height

The notion of height h(ξ) of a point ξ ∈ Q̄ or in general, the height
h(P ) of a point P in an algebraic variety over a number field K, should
provide an idea of the arithmetic complexity of the point.

1.1. Places on number fields. Suppose that we are working with
a number field K. A place of K is identified with an absolute value
|.|v : K −→ R+ and a weight nv. The weights nv are being normalized
in such a way that nv = 1 for all absolute values |.|v : Q −→ R+ and
for any extension of number fields K/K0,

nv =
[Kv : Kv0 ]

[K : K0]
nv0 ,

where Kv is denoting the completion K with respect to |.|v and |.|v is
extending |.|v0 . We will denote by MK the set of places of K.

Example 1.1. The places of Q are of two kinds (all of them with nv = 1):

(1) Usual absolute value: |x|∞ = max(x,−x).
(2) P -adic absolute value |.|p: suppose that p ∈ Q is a rational

prime and ξ = pmp
a

b
with p - a, b then |ξ|p = p−mp .

Example 1.2. For a number field K, the places |.|σ extending the or-
dinary absolute value |.|∞ can be obtained as |x|σ = |σ(x)|∞ for an
embedding K ↪→ C. The weight is nv = 1 or nv = 2 depending if σ is
a real or a complex embedding.

Remark 1.3. Basic properties of the places are:

(1) If K/K0 is a finite extension:
∑

v∈MK ,v/v0
nv = nv0 .

(2) (product formula) ∀α ∈ K× we have
∑

v∈MK
nv log |α|v = 0.

1



2 JORGE PINEIRO

1.2. Heights associated to metrized line bundles. Suppose, as
before, that K is a number field. Let X be an n-dimensional projective
algebraic variety over K and L a line bundle on X. For each place
v ∈MK we consider:

(1) Xv the v-adic analytic space, that is, X(C) for v | ∞ and
the Berkovich analytic space Xan

v over the completion of the
algebraic closure Cv of Kv for finite places.

(2) A metric ‖.‖v on the line bundle Lv = L ⊗K Cv on the v-adic
analytic space Xv.

Berkovich analytic spaces, introduced in [1], are locally compact spaces
Xan associated to algebraic varieties X over non-Archimedean field
with a continuous map π : Xan −→ X. We refer to section 1.2 and sec-
tion 1.3 of [2] for properties of these analytic spaces and analytification
Lan of line bundles on X. On the other hand:

Definition 1.4. A metric on a line bundle L is an assignment that
to each open set U ⊂ X and every section s of L on U associates a
continuous function:

‖s(.)‖ : U −→ R+

that is compatible with the restriction on open sets, and defines a metric
on the fibres:

(1) ‖s(P )‖ = 0 if and only if s(P ) = 0.
(2) For λ a regular section of OX(U), ‖λs(P )‖ = |λ(P )|‖s(P )‖.

Example 1.5. (Canonical metric on O(1)) In the case X = P1 and
L = O(1) we have the metric that, if (x0 : x1) represent coordinates on
P1, is given by

‖(λ0x0 + λ1x1)(a0 : a1)‖v =
|λ0a0 + λ1a1|v
sup(|a0|v, |a1|v)

.

Using s = x1 we recover the Weil height of a point ξ = (ξ, 1) ∈ K∗.
The metric so defined is called the canonical metric on L = O(1).

Definition 1.6. Let F be a field that is complete with respect to a
non-Archimedean absolute value an denote by F 0 its valuation ring.
A model of (X,L) is a triple (X̃, L̃, e), where X̃ is a flat model over
SpecF 0 of X, L̃ is a line bundle on X̃ and e ≥ 1 is an integer such
that L̃|X ∼= Le.

Remark 1.7. A proper model X̃ of a proper variety X admits a sur-
jective reduction map red : Xan −→ X̃ as explained in section 2.3 of
[1].
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Definition 1.8. (Algebraic metric induced by a model on the associated
analytic space over non-Archimedean fields) Let (X̃, L̃, e) be a model of
(X,L). Let s be a local section of the analytification Lan defined at the
point P ∈ Xan. Let Ũ ⊂ X̃ be a trivializing open neighbourhood of
red(P ) and σ a generator of L̃|Ũ . Let U = Ũ ∩ X and λ ∈ O(Uan)
such that se = λσ on Uan. Then, the metric induced by the proper
model (X̃, L̃, e) on Lan, denoted ‖.‖X̃,L̃,e is given by

‖s(P )‖X̃,L̃,e = |λ(P )|1/e.

Equivalently the norm of the local frame ‖σ(P )‖ ≡ 1.

Definition 1.9. A metrized line bundle L̄ is a collection

L̄ = (L, (‖.‖v)v∈M)

with notation as before. Such collection is defined to be quasi-algebraic
if there exist an integral model which defines the metric ‖.‖v for all
except maybe a finite number of v.

Definition 1.10. Let X be an algebraic variety defined over a number
field K and L̄ = (L, (‖.‖v)v∈M) a quasi-algebraic metrized line bundle
on X. The height hL̄(P ) of a point P ∈ X(K̄) can be expressed by the
intrinsic formula

hL̄(P ) = −
∑
v∈MK

1

# Gal(P )v

∑
Q∈Gal(P )v

log ‖s(Q)‖v,

where Gal(P )v is denoting the v-Galois orbit of P , i.e. the image of
Gal(K̄ : K)P under the map iv : X(K̄) −→ Xv.

Remark 1.11. Let K be a number field and suppose that for each al-
gebraic extension L/K and for each w ∈ MF extending the place
v ∈ MK we denote by iw the map iw : X(L) −→ Xan

v sending the
algebraic points over F into the v-adic analytic space. An equivalent
definition for the height of a point P ∈ X(F ) with respect to quasi-
algebraic metrized line bundle L̄ is the sum

hL̄(P ) = −
∑
w∈ML

nv log ‖s ◦ iw(P )‖v,

for any rational regular section s such that P /∈ | div(s)|.

Example 1.12. Let ξ ∈ Q̄∗ of degree d ≥ 1 with minimal polynomial
over Z

Pξ = α0x
d + · · ·+ αd−1x+ αd = α0

∏
η∈Gξ

(x− η) ∈ Z[x],
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where Gξ is denoting the Galois orbit of ξ. The Weil height of ξ is

h(ξ) =
1

d
(
∑
η∈Gξ

log max(1, |η|) + log |α0|).

Definition 1.13. The essential minimum of X with respect to L̄ is
defined as

µessL̄ (X) = sup
Y⊆X,Y closed

inf
P∈(X\Y )(K̄)

hL̄(P ).

Remark 1.14. The essential minimum is the generic infimum for the
function hL̄. An equivalent definition will be

µessL̄ (X) = inf{θ ∈ R | {P ∈ X(K̄) |hL̄(P ) ≤ θ} is Zariski dense}

1.3. Semi-positive metrics. A very special type of metric is the case
of a semi-positive metrized line bundle L̄. In this situation the metrics
‖.‖v on Lv are limits of smooth metrics in the Archimedean case (v | ∞)
and limits of algebraic metrics (induced by models (X̃, L̃) of (X,L)) in
the non-Archimedean case.

Example 1.15. The canonical metric is semi-positive on the line bundle
L = O(1) on P1!

We can extend to notion of height to subvarieties of Y ⊂ X and
in particular define hL̄(X). An important result of Shou-Wu Zhang
(Theorem 5.2 in [12]) states that for L̄ semi-positive and ample, the
essential minimum can be bounded below:

µessL̄ (X) ≥ hL̄(X)

(n+ 1) degL̄(X)
.

1.4. Falting height. Let X := P1
Z and consider the section s∞ :

Spec(Z) −→ X defined by [1, 0]. We denoted by D∞ the divisor in-
duced by this section and by L = OX (D∞) the associated line bundle.
The complex points P1(C) of the surface X are in holomorphic bijection
with the modular curve

X = (Sl2(Z)\H) ∪∞ i−→ P1(C),

where the map i is induced by the j-invariant map j : H −→ C given
by

j(τ) =
1

q
+ 744 + 196884q + . . . , q = e2πiτ .

The line bundle L(C) is isomorphic to the modular formsM12(Sl2(Z))
of weight 12 and level 1 over X and this isomorphism carries the Pe-
terson scalar product defined for f ∈M12(Sl2(Z)) as

‖f‖Pet = (4π Im(τ))6|f(τ)|
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to sections of L(C) on X. We have then a metrized line bundle
(L, ‖.‖Pet) in the sense of Arakelov that is singular at (1, 0). To be
able to define a height function we put the canonical metric ‖.‖can over
the finite places to have (L, ‖.‖v) = (L, ‖.‖v,can ∪ ‖.‖v|∞,P et)
Suppose that for each prime number p we have fixed an extension of the
p-adic norm |.|p on Q̄. Also denote by O(α) the orbit of α ∈ Q̄ under
the Galois group Gal(Q̄/Q). Then, as an application of definition 1.10
for the section ∆, the Falting height can be expressed as:

hFal(α) =
1

12

 1

#O(α)

∑
α′∈O(α)

ghyp(α
′) +

1

#O(α)

∑
p prime

∑
α′∈O(α)

log+ |α′|p

 ,

where the function ghyp : C −→ R is defined to be the function such
that g∞ = ghyp ◦ j and the hyperbolic Green function g∞ : H −→ R is
defined by

g∞(τ) = − log(‖∆(τ)‖Pet) = − log((4π Im(τ))6|∆(τ)|).

We want to consider not only line bundle but also real line bundles,
or at least, the notion of real global sections with positive coefficients

s = s⊗a1
1 ⊗ · · · ⊗ s⊗all ∈

⊔
n≥0

Γ(X ,L⊗n)⊗ R+,

where si ∈
⊔
n≥0 Γ(X ,L⊗n) and a1, . . . , al are positive real numbers.

The support of s is given by | div(s)| =
⋃
k | div(sk)| and the Green

function gs associated to the section s will be

gs(x) = − log ‖s(x)‖Pet = − log
l∏

j=1

‖sj(x)‖ajPet.

Proposition 1.16. Let s be a real section of weight one and x ∈ X (C)\
| div(s)| and algebraic point then we have the inequality:

hFal(x) ≥ inf
y∈X (C)

gs(y) = − log sup
y∈X (C)

‖s(y)‖Pet.

In particular we obtain µessFal ≥ infy∈X (C) gs(y).

Proof. The proof is based on the fact that the finite places have a non-
negative contribution to the height. Choose a representation of s as
s = s⊗a1

1 ⊗· · ·⊗s⊗all and K = Q(x). Also denote by Σ the set of places
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over infinity.

hFal(x) =
k∑
i=1

ai
[K : Q]

 ∑
v finite

log+ ‖s(ξ)‖can,v −
∑
v|∞

log ‖s(ξ)‖Pet,v


≥

k∑
i=1

ai
[K : Q]

−∑
v|∞

log ‖s(ξ)‖Pet,v


=

1

[K : Q]

∑
σ∈Σ

gs(σ(x))

≥ inf
y∈X (C)

gs(y).

Therefore for a real section s of L and x ∈ X (C) \ | div(s)| we have
hFal(x) ≥ infy∈X (C) gs(y) and as a consequence µessFal ≥ infy∈X (C) gs(y).

�

Example 1.17. For α = j(Eα) ∈ {0, 1}, like for example τ = 1+
√

3i
2

that

has j-invariant zero, the equation above gives hFal(α) =
1

12
ghyp(α).

In the following we consider ρ = eπi/3 and denote by T the funda-
mental domain

T = {z ∈ C : Im(z) > 0, |z| > 1 and Im(z) < 1/2}.
Some properties of the functions g∞ and ghyp are:

Lemma 1.18. For every τ ∈ T we have g∞(τ) ≥ g∞(.5+ i Im(τ)) with
equality if and only if <(τ) = .5. Moreover the function t 7→ g∞(.5+ it)

is strictly increasing on [
√

3
2
,∞) and in particular attains its minimum

at ξ = 0.

Proof. This is lemma in 3.1 in [4]. It is a consequence of the vanishing
properties of the normalized Eisenstein series E?

2 on the orbits of i and
ρ under Sl2(Z). Consider the real valued function l : R −→ R given by
l(x) = g∞(s+ i Im(τ)). The derivative

l′(s) = 2<(δg∞(s+ i Im(τ))) = 2π Im(E∗2(s+ i Im(τ))),

and this last one is zero only if <(s) = 0 or <(s) = .5. Now from the
product formula for

∆ = q
∞∏
n=1

(1− qn)24

is clear that |∆(i Im(τ))| ≤ |∆(.5 + Im(τ))|. For the second part,
consider the function h : (0,∞) −→ R defined by h(t) = g∞(.5 + it).
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The function h satisfies

h′(t) = −2 Im(δg∞(.5 + it)) = 2π<(E∗2(.5 + 2it)) = 2πE∗2(.5 + it).

Now, using that the function E∗2 vanishes only at orbit of i and ρ, we

get that h′ does not vanishes in (
√

3
2
,∞). �

Lemma 1.19. Let ghyp : C −→ R be the function defined by the expres-
sion g∞ = ghyp ◦ j. Then we have 0 < δxghyp(1) < 1 and the function
g1 : C \ {0} −→ R defined by g1(ξ) = ghyp(ξ)− δxghyp(1) log |ξ|, attains
its minimum value at, and only at, ξ = 1.

This is proposition A in [4]. The idea of the proof is to translate the
analysis from the upper half-plane H to the unit disk D using the map

ψ(w) =
ρ̄w + ρ

w + 1
: H −→ D.

Now we can define the functions

jD = j ◦ ψ : D −→ C, gD = g∞ ◦ ψ : D −→ R,
and

f : D −→ C defined by f(w3) = jD(w).

Using these function an estimate for δxghyp(1) stronger that the needed
inequality 0 < δxghyp(1) < 1 can be actually proved. It can be proved

1

1032
≤ δxghyp(1) ≤ 1

1025
.

For the second part of the lemma, the proof of g1(ξ) ≥ g1(1) for all
ξ 6= 0 is divided in three cases according to the value of Im(τ), where
τ ∈ T and j(τ) = ξ:

case 1. Im(τ) ≥ 1. For τ ∈ H satisfying Im(τ) ≥ 1.
case 2. 1

π
log(19) ≤ Im(τ) ≤ 1.

case 3. Im(τ) ≤ 1
π

log(19).

Theorem 1.20. The first and second minima for the Falting height
are hFal(0) and hFal(1). We have the inequality

hFal(0) < hFal(1) < µessFal.

Proof. This is theorem 1 in [4]. It is obtained as a consequence of
lemma 1.18 and lemma 1.19 in the same paper. By lemma 1.18 we
know that

hFal(1) =
1

12
hhyp(1) >

1

12
hhyp(0) = hFal(0).

To prove the rest of the result it is enough to find κ > 0 such that
for every algebraic number α 6= 0, 1 we have hFal(α) ≥ hFal(1) + κ.
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We are going to use proposition 1.16 for a different section of weight
12, namely s = (j − 1)εj∂xghyp(1)∆ where ε sufficiently small. We will
actually consider ε ∈ (0, 1− ∂xghyp(1)) (this last interval is non-empty
by lemma 1.19). We construct, for each prime p, the non-negative
function Gε,p : Cp \ {0, 1} −→ R defined by

Gε,p(z) = log+ |z|p − ∂xghyp(1) log |z|p − ε log |z − 1|p.

On the other hand for places at infinity, for each ε ∈ (0, 1− ∂xghyp(1))
consider the function Gε : C \ {0, 1} −→ R defined by the formula

Gε(z) = g1(z)− ε log |z − 1| = ghyp(z)− ∂xghyp(1) log |z| − ε log |z − 1|.

The formula for the Falting height in terms of the Galois orbits, can be
expressed using the functions Gε and Gε,p with the help of the product
formula. We obtain:

12hFal(α) =
1

#O(α)

∑
α′∈O(α)

Gε(α
′) +

1

#O(α)

∑
p prime

∑
α′∈O(α)

Gε,p(α
′),

and we need to show that infC\{0}Gε(z) > ghyp(1). But the asymptotic
of ghyp coming from g∞ tell us that

ghyp(z) = log |z| − 6 log(log |z|) +O(1) as z −→∞.

Therefore for ε0 > 0 satisfying ε0 + ∂xghyp(1) < 1 and |z| > R0 we have
that Gε(z)→∞ in z and then for any C > 0 fixed:

Gε(z) ≥ ghyp(1) + C.

By proposition 1.19 there is an ε ∈ (0, ε0) such that for some δ > 0 and
every z satisfying |z − 1| ≥ 1/2 and |z| ≤ R0 we have the bound

Gε(z) ≥ ghyp(1) + δ.

Again using proposition 1.19 for z satisfying |z − 1| ≤ 1/2 we have

Gε(z) = g1(z)− ε log |z − 1| ≥ ghyp(z) + ε log(2)

which completes the proof of the theorem. �

1.5. Toric Varieties. Toric varieties are algebraic varieties that admit
a torus action. Let Tn = Gn

m be the split algebraic torus over a field
K. We clearly have an action µ : Tn × Tn −→ Tn.

Definition 1.21. A toric variety with torus Tn is a normal variety X
such that Tn ⊂ X and the natural action µ extends to an action of Tn
on the whole X.
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One possible construction of toric varieties uses rational polyhedral
cones and fans. Let N ∼= Zn be a lattice of dimension n and let us
denote NR = N ⊗Z R. A strongly convex rational polyhedral cone is a
set σ ⊂ NR ∼= Rn such that:

(1) It is convex, i.e. λx+ (1− λ)y ∈ σ for x, y ∈ σ and λ ∈ [0, 1].
(2) It is a cone, i.e. λx ∈ σ for x ∈ σ and λ ∈ R+.
(3) It is polyhedral, meaning that it is defined as intersection of

semi-spaces σ = ∩iH+
ui

, where ui ∈ NR and

H+
ui

= {v ∈ NR | (v, ui) ≥ 0}.

(4) It is rational, i.e. ui ∈ N .
(5) It is strongly convex, meaning that it does not contain a linear

subspace other 0.

Definition 1.22. A face τ of σ is given by the intersection σ∩Hu with
a semiplane, where σ ⊂ H+

u . A one dimensional face is called a ray.
A (n− 1)-dimensional face is called a facet.

Definition 1.23. Let M = Hom(N,Z) be the dual of N . The dual
cone σ∨ ⊂MR = M ⊗Z R is given by

σ∨ = {u ∈MR | (u, v) ≥ 0 for all v ∈ NR}.

Remark 1.24. A cone σ is strongly convex if and only if the dual cone
σ∨ is of maximal dimension. If σ is of maximal dimension and strongly
convex, then the dual is given by σ∨ = ∩iH+

ui
where the set {u1, . . . , un}

generates σ.

Definition 1.25. Let σ be a strongly convex rational polyhedral cone.
The affine toric variety Xσ associated to the cone σ is given by Xσ =
Spec(K[Mσ]), where K[Mσ] is the semi-group algebra generated by the
integral points Mσ = M ∩ σ∨ of the dual cone σ∨. To each element
m ∈ Mσ we will associate the character χm which can be identified
with tm = tm1

1 tm2
2 . . . tmnn via the map β : M −→ Zn. By Gordan’s

lemma, the ring K[Mσ] = K[χMσ ] is generated as K-algebra by the
finitely many integral points in the unit cube of σ∨.

Definition 1.26. A fan Σ is a set or strongly convex rational polyhedral
cones, such that if σ, σ′ ∈ Σ, then σ∩σ′ ∈ Σ and for all σ ∈ Σ, if τ ⊂ σ
is a face of σ, then τ ∈ Σ.

If τ is a face of σ, the map τ ↪→ σ induces an open immersion
Xτ ↪→ Xσ and we can glue together Xσ and Xσ′ along Xσ∩σ′ associated
to their common face σ ∩ σ′, to form the toric variety XΣ.
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Example 1.27. Let Σ be a fan. (0) is a face of every σ ∈ Σ, thus
X0 = Tn is an open set in all Xσ and therefore in XΣ. The action of
X0 on Xσ is defined as corresponding to the map m 7→ m ⊗ m from
Mσ to M ⊗Mσ.

Example 1.28. If we take the fan in R made out of the three cones
{0, σ+ = R+e1, σ− = R+(−e1)} we get

X+ = Spec(K[x]), X− = Spec(K[x−1]),

glued along X0 = Spec(K[x, x−1]) by the map x→ x−1. This gives P1
K

as a toric variety.

Example 1.29. In a similar way as we did to obtain P1, we can consider
the simplex ∆n = conv(0, e1, . . . , en) and the fan Σ∆n generated by

{e1, e2, . . . , en, e0 = −(e1 + · · ·+ en)},

in the sense that the cones σ ∈ Σ∆n are generated by a strict subset of
the above set of vectors. The toric variety obtained is XΣ = Pn.

Let v ∈MQ be a place of Q and let Sv ⊂ Tnv be the compact invariant
torus. In general Sv is a compact analytic subgroup of Tnv defined as

Sv = {P ∈ Tnv |χm(P )| = 1 , ∀m ∈M}.

Example 1.30. S∞ = (S1
C)n = {(t1, . . . , tn) ∈ (C∗)n | |ti| = 1 for all i}.

Definition 1.31. Let L̄ = (L, ‖.‖) = (L, (‖.‖v)v∈MQ) be a metrized
toric line bundle on the toric variety X. The metric ‖.‖ is called toric
if ‖.‖v is Sv-invariant for all v of MQ.

Suppose that the fan Σ is complete. We have a valuation map

valv : Tv ⊂ Xv −→ NR ∼= Rn

given by valv(x1, . . . , xn) = (− log |x1|v, . . . ,− log |xn|). The fibre of
valv over 0 ∈ NR coincides with the compact invariant torus Sv.
We will define now a family of functions ϕv : NR −→ R called the
metric functions associated to the metrized toric line bundle L̄ =
(L, {‖.‖v}v∈MQ).

Definition 1.32. Let {‖.‖v}v∈MQ be a toric metric on the toric line
bundle L. We define the metric function ϕv : NR ∼= Rn −→ R by

ϕv(u) = − log ‖s(P )‖v,

where u = valv(P ). It is well defined because a toric metric is Sv-
invariant.
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Example 1.33. Consider the line bundle L = O(DΨ) associated to a
divisor with support function Ψ. If ‖.‖ is any toric metric on L then
the function |ϕv −Ψ| is bounded.

Definition 1.34. A metric {‖.‖v}v∈MQ on O(DΨ) is adelic if ϕv = Ψ
for all v except maybe a finite number.

Theorem 1.35. There is a bijection between the set of semi-positive
adelic toric metrics on L and the set of continuous concave functions
{ψv}v∈Q on NR such that |ψv − Ψ| is bounded and ψv = Ψ for all v
except maybe a finite number.

This is Theorem in 4.8.1 in [2].

Example 1.36. We can define a adelic metric on O(DΨ), called the
canonical metric ‖.‖can,v, by the equation

log ‖sD(P )‖can,v = ΨD(valv(P )),

where v ∈MQ. The canonical metric is semi-positive if and only if DΨ

is nef.

Remark 1.37. For a toric metric {‖.‖v}v∈MQ on a toric line bundle L =
O(DΨ) and P ∈ X0(Q) we have log ‖sD(P )‖v = ϕv,D(valv(P )) for all
places. The formula for the height of P becomes

hL̄(P ) = −
∑
v∈MQ

log ‖s(P )‖v = −
∑
v∈MQ

ϕv,D(valv(P )).

Definition 1.38. The v-adic roof function ϑv is given by the function
ϑv : ∆L −→ R defined by the formula:

ϑv(x) = inf
y∈Rn

(x, y)− ϕv(y).

The global v-adic roof function is defined as ϑ =
∑

v ϑv. In the case
of a semi-positive metric, the v-adic roof function coincide with the
Legendre-Frechnel dual ϕ∨v of the concave function ϕv.

Example 1.39. Suppose that X is the projective space as in example
1.29. The Legendre-Frechnel dual ϕ∨∞ of the function

ϕ∞ = Ψ∆n(u1, . . . , un) = min(0, u1, u2, . . . , un)

is the indicator function ϕ∨∞ = i∆n of the associated polytope ∆n.

Theorem 1.40. For a semi-positive metrized line bundle L̄ = O(DΨ),
the roof functions satisfy ϑv = 0 for all v except maybe a final number.
In fact we have a bijection between the set of semi-positive adelic toric
metrics on L and the set of continuous concave functions {ψ∨v }v∈Q on
∆Ψ such that ψ∨v = 0 for all v except maybe a finite number.
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This is Theorem 4.9.2 in [2].

Remark 1.41. For a toric metric {‖.‖v}v∈MQ on a toric line bundle L =
O(DΨ) and P ∈ X0(Q) we have

∑
v∈MQ

valv(P ) = 0 and the height of

P in the connected component X0 of 0 satisfies

hL̄(P ) =
∑
v∈MQ

(x, valv(P ))− ϕv,D(valv(P )) ≥
∑
v∈MQ

ϑv(x) = ϑ(x),

for any x ∈ ∆Ψ. In particular, that absolute minimum µabsL̄ (X0) ≥
maxx∈∆Ψ

ϑ(x). A sharper result is obtained in the following theorem.

Theorem 1.42. Let X be a proper toric variety over Q and L̄ = O(D)
a toric metrized R-line bundle. Then

µessO(D)
(X) = max

x∈∆
ϑ(x).

This is Theorem A (Corollary 3.10) in [3].

1.6. Curves on Products of the multiplicative group. Let Gm

be the multiplicative group of dimension 1. Let us define a distance
function by

d∞ : (Gn
m)2 −→ R+, d∞(x, y) = h(xy−1).

Proposition 1.43. Let C ⊂ (Gn
m)2(Q), there exist a constant κ such

that for all x, y ∈ Gn
m(Q̄) except at most a finite number,

d∞(x, y) ≥ K.

This is Theorem 6.2 in [11], obtained as a consequence of positive self-
intersection and the inequality between successive minima.

Theorem 1.44. For all algebraic numbers α 6= 0, 1,
1±
√

3i

2
, we have

h(α) + h(1− α) ≥ 1

2
log

1 +
√

5

2
= .2406059...,

with equality if and only if alpha or 1 − α is a primitive 10-th root of
unity.

This is Theorem 1 in [10] and the proof is based on the following lemma
in the same paper.

Lemma 1.45. For all z ∈ C and for all places v, if nv = 1, 2 or 0
depending on the place v being real Archimedean, complex Archimedean
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or non-Archimedean, we have:

max(0, log |z|v) + max(0, log |1− z|v) ≥

≥
√

5− 1

2
√

5
log |z2 − z|v +

1

2
√

5
log |z2 − z + 1|v +

nv
2

log
1 +
√

5

2
.

Variety Metric/height L. bd. for µess Formula for µess

(X,L) Gen.Alg.Var Semi-pos. smooth. met. µessL (X) ≥ hL̄(X)

(n+1) degL̄(X)
—-

(X,ϕ) Dyn. Systems. Canonical metric µessL (X) ≥ 0 µessL (X) = 0

Toric varieties Toric metric µessL (X) ≥ µabsL̄ (X0) µessL (X) = maxx∈∆ ϑ(x)

Mod. Space of E.C. Faltings height hFal(1) = −.74862817 —-

{x+ y = 1} ⊂ (Gm)2 “Product height” µessL (X) ≥ 1
2

log 1+
√

5
2

—-

X ⊂ toric variety Toric metric —- —-
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Math. 127, 337-347 (1997).

[10] D. Zagier, Algebraic numbers close to both 0 and 1, Math. Comp. 61, 485–491
(1993).

[11] S. Zhang, Positive line bundles on arithmetic surfaces., Ann. of Math. 2 136,
no. 3, 569–587 (1992).

[12] S. Zhang, Positive line bundles on arithmetic varieties, J. Amer. Math. Soc.
8, 187–221 (1995).


