REPORT ON THE ESSENTIAL MINIMUM

JORGE PINEIRO

ABSTRACT. We collect recent results on the essential minimum of height functions on arithmetic varieties.

1. Essential minimum of the height

The notion of height $h(\xi)$ of a point $\xi \in \overline{\mathbb{Q}}$ or in general, the height h(P) of a point P in an algebraic variety over a number field K, should provide an idea of the arithmetic complexity of the point.

1.1. Places on number fields. Suppose that we are working with a number field K. A place of K is identified with an absolute value $|.|_v: K \longrightarrow \mathbb{R}^+$ and a weight n_v . The weights n_v are being normalized in such a way that $n_v = 1$ for all absolute values $|.|_v : \mathbb{Q} \longrightarrow \mathbb{R}^+$ and for any extension of number fields K/K_0 ,

$$n_v = \frac{[K_v : K_{v_0}]}{[K : K_0]} n_{v_0},$$

where K_v is denoting the completion K with respect to $|.|_v$ and $|.|_v$ is extending $|.|_{v_0}$. We will denote by \mathcal{M}_K the set of places of K.

Example 1.1. The places of \mathbb{Q} are of two kinds (all of them with $n_v = 1$):

- (1) Usual absolute value: $|x|_{\infty} = \max(x, -x)$.
- (2) *P*-adic absolute value $|.|_p$: suppose that $p \in \mathbb{Q}$ is a rational prime and $\xi = p^{m_p} \frac{a}{b}$ with $p \nmid a, b$ then $|\xi|_p = p^{-m_p}$.

Example 1.2. For a number field K, the places $|.|_{\sigma}$ extending the ordinary absolute value $|.|_{\infty}$ can be obtained as $|x|_{\sigma} = |\sigma(x)|_{\infty}$ for an embedding $K \hookrightarrow \mathbb{C}$. The weight is $n_v = 1$ or $n_v = 2$ depending if σ is a real or a complex embedding.

Remark 1.3. Basic properties of the places are:

- (1) If K/K_0 is a finite extension: $\sum_{v \in \mathcal{M}_K, v/v_0} n_v = n_{v_0}$. (2) (product formula) $\forall \alpha \in K^{\times}$ we have $\sum_{v \in \mathcal{M}_K} n_v \log |\alpha|_v = 0$.

JORGE PINEIRO

1.2. Heights associated to metrized line bundles. Suppose, as before, that K is a number field. Let X be an n-dimensional projective algebraic variety over K and \mathcal{L} a line bundle on X. For each place $v \in \mathcal{M}_K$ we consider:

- (1) X_v the *v*-adic analytic space, that is, $X(\mathbb{C})$ for $v \mid \infty$ and the Berkovich analytic space X_v^{an} over the completion of the algebraic closure \mathbb{C}_v of K_v for finite places.
- (2) A metric $\|.\|_v$ on the line bundle $\mathcal{L}_v = \mathcal{L} \otimes_K \mathbb{C}_v$ on the *v*-adic analytic space X_v .

Berkovich analytic spaces, introduced in [1], are locally compact spaces X^{an} associated to algebraic varieties X over non-Archimedean field with a continuous map $\pi : X^{an} \longrightarrow X$. We refer to section 1.2 and section 1.3 of [2] for properties of these analytic spaces and analytification \mathcal{L}^{an} of line bundles on X. On the other hand:

Definition 1.4. A metric on a line bundle \mathcal{L} is an assignment that to each open set $U \subset X$ and every section s of \mathcal{L} on U associates a continuous function:

$$\|s(.)\|: U \longrightarrow \mathbb{R}^+$$

that is compatible with the restriction on open sets, and defines a metric on the fibres:

- (1) ||s(P)|| = 0 if and only if s(P) = 0.
- (2) For λ a regular section of $\mathcal{O}_X(U)$, $\|\lambda s(P)\| = |\lambda(P)| \|s(P)\|$.

Example 1.5. (Canonical metric on $\mathcal{O}(1)$) In the case $X = \mathbb{P}^1$ and $L = \mathcal{O}(1)$ we have the metric that, if $(x_0 : x_1)$ represent coordinates on \mathbb{P}^1 , is given by

$$\|(\lambda_0 x_0 + \lambda_1 x_1)(a_0 : a_1)\|_v = \frac{|\lambda_0 a_0 + \lambda_1 a_1|_v}{\sup(|a_0|_v, |a_1|_v)}$$

Using $s = x_1$ we recover the Weil height of a point $\xi = (\xi, 1) \in K^*$. The metric so defined is called the canonical metric on $\mathcal{L} = \mathcal{O}(1)$.

Definition 1.6. Let F be a field that is complete with respect to a non-Archimedean absolute value an denote by F^0 its valuation ring. A model of (X, \mathcal{L}) is a triple $(\tilde{X}, \tilde{\mathcal{L}}, e)$, where \tilde{X} is a flat model over Spec F^0 of X, $\tilde{\mathcal{L}}$ is a line bundle on \tilde{X} and $e \geq 1$ is an integer such that $\tilde{\mathcal{L}}|X \cong \mathcal{L}^e$.

Remark 1.7. A proper model \tilde{X} of a proper variety X admits a surjective reduction map red : $X^{an} \longrightarrow \tilde{X}$ as explained in section 2.3 of [1].

Definition 1.8. (Algebraic metric induced by a model on the associated analytic space over non-Archimedean fields) Let $(\tilde{X}, \tilde{\mathcal{L}}, e)$ be a model of (X, \mathcal{L}) . Let s be a local section of the analytification \mathcal{L}^{an} defined at the point $P \in X^{an}$. Let $\tilde{U} \subset \tilde{X}$ be a trivializing open neighbourhood of red(P) and σ a generator of $\tilde{\mathcal{L}}|\tilde{U}$. Let $U = \tilde{U} \cap X$ and $\lambda \in \mathcal{O}(U^{an})$ such that $s^e = \lambda \sigma$ on U^{an} . Then, the metric induced by the proper model $(\tilde{X}, \tilde{\mathcal{L}}, e)$ on \mathcal{L}^{an} , denoted $\|.\|_{\tilde{X}, \tilde{\mathcal{L}}, e}$ is given by

$$\|s(P)\|_{\tilde{X},\tilde{\mathcal{L}},e} = |\lambda(P)|^{1/e}$$

Equivalently the norm of the local frame $\|\sigma(P)\| \equiv 1$.

Definition 1.9. A metrized line bundle $\overline{\mathcal{L}}$ is a collection

 $\bar{\mathcal{L}} = (\mathcal{L}, (\|.\|_v)_{v \in \mathcal{M}})$

with notation as before. Such collection is defined to be quasi-algebraic if there exist an integral model which defines the metric $\|.\|_v$ for all except maybe a finite number of v.

Definition 1.10. Let X be an algebraic variety defined over a number field K and $\overline{\mathcal{L}} = (\mathcal{L}, (\|.\|_v)_{v \in \mathcal{M}})$ a quasi-algebraic metrized line bundle on X. The height $h_{\overline{\mathcal{L}}}(P)$ of a point $P \in X(\overline{K})$ can be expressed by the intrinsic formula

$$h_{\bar{\mathcal{L}}}(P) = -\sum_{v \in \mathcal{M}_K} \frac{1}{\# \operatorname{Gal}(P)_v} \sum_{Q \in \operatorname{Gal}(P)_v} \log \|s(Q)\|_v,$$

where $\operatorname{Gal}(P)_v$ is denoting the v-Galois orbit of P, i.e. the image of $\operatorname{Gal}(\bar{K}:K)P$ under the map $i_v: X(\bar{K}) \longrightarrow X_v$.

Remark 1.11. Let K be a number field and suppose that for each algebraic extension L/K and for each $w \in \mathcal{M}_F$ extending the place $v \in \mathcal{M}_K$ we denote by i_w the map $i_w : X(L) \longrightarrow X_v^{an}$ sending the algebraic points over F into the v-adic analytic space. An equivalent definition for the height of a point $P \in X(F)$ with respect to quasialgebraic metrized line bundle $\overline{\mathcal{L}}$ is the sum

$$h_{\bar{\mathcal{L}}}(P) = -\sum_{w \in \mathcal{M}_L} n_v \log \|s \circ i_w(P)\|_v$$

for any rational regular section s such that $P \notin |\operatorname{div}(s)|$.

Example 1.12. Let $\xi \in \overline{\mathbb{Q}}^*$ of degree $d \ge 1$ with minimal polynomial over \mathbb{Z}

$$P_{\xi} = \alpha_0 x^d + \dots + \alpha_{d-1} x + \alpha_d = \alpha_0 \prod_{\eta \in G_{\xi}} (x - \eta) \in \mathbb{Z}[x],$$

where G_{ξ} is denoting the Galois orbit of ξ . The Weil height of ξ is

$$h(\xi) = \frac{1}{d} \left(\sum_{\eta \in G_{\xi}} \log \max(1, |\eta|) + \log |\alpha_0| \right).$$

Definition 1.13. The essential minimum of X with respect to $\overline{\mathcal{L}}$ is defined as

$$\mu_{\bar{\mathcal{L}}}^{ess}(X) = \sup_{Y \subseteq X, Y \text{ closed } P \in (X \setminus Y)(\bar{K})} \inf_{h_{\bar{\mathcal{L}}}(P)} h_{\bar{\mathcal{L}}}(P).$$

Remark 1.14. The essential minimum is the generic infimum for the function $h_{\bar{L}}$. An equivalent definition will be

$$\mu_{\bar{\mathcal{L}}}^{ess}(X) = \inf\{\theta \in \mathbb{R} \mid \{P \in X(K) \mid h_{\bar{\mathcal{L}}}(P) \le \theta\} \text{ is Zariski dense}\}$$

1.3. Semi-positive metrics. A very special type of metric is the case of a semi-positive metrized line bundle $\overline{\mathcal{L}}$. In this situation the metrics $\|.\|_v$ on \mathcal{L}_v are limits of smooth metrics in the Archimedean case $(v \mid \infty)$ and limits of algebraic metrics (induced by models (\tilde{X}, \tilde{L}) of (X, \mathcal{L})) in the non-Archimedean case.

Example 1.15. The canonical metric is semi-positive on the line bundle $\mathcal{L} = \mathcal{O}(1)$ on \mathbb{P}^1 !

We can extend to notion of height to subvarieties of $Y \subset X$ and in particular define $h_{\bar{\mathcal{L}}}(X)$. An important result of Shou-Wu Zhang (Theorem 5.2 in [12]) states that for $\bar{\mathcal{L}}$ semi-positive and ample, the essential minimum can be bounded below:

$$\mu_{\bar{\mathcal{L}}}^{ess}(X) \ge \frac{h_{\bar{\mathcal{L}}}(X)}{(n+1) \deg_{\bar{\mathcal{L}}}(X)}.$$

1.4. Falting height. Let $\mathcal{X} := \mathbb{P}^1_{\mathbb{Z}}$ and consider the section s_{∞} : Spec(\mathbb{Z}) $\longrightarrow \mathcal{X}$ defined by [1,0]. We denoted by D_{∞} the divisor induced by this section and by $\mathcal{L} = \mathcal{O}_{\mathcal{X}}(D_{\infty})$ the associated line bundle. The complex points $\mathbb{P}^1(\mathbb{C})$ of the surface \mathcal{X} are in holomorphic bijection with the modular curve

$$X = (\mathrm{Sl}_2(\mathbb{Z}) \backslash \mathbb{H}) \cup \infty \xrightarrow{i} \mathbb{P}^1(C),$$

where the map i is induced by the j-invariant map $j : \mathbb{H} \longrightarrow \mathbb{C}$ given by

$$j(\tau) = \frac{1}{q} + 744 + 196884q + \dots, \qquad q = e^{2\pi i \tau}$$

The line bundle $\mathcal{L}(\mathbb{C})$ is isomorphic to the modular forms $\mathcal{M}_{12}(\mathrm{Sl}_2(\mathbb{Z}))$ of weight 12 and level 1 over X and this isomorphism carries the Peterson scalar product defined for $f \in \mathcal{M}_{12}(\mathrm{Sl}_2(\mathbb{Z}))$ as

$$||f||_{Pet} = (4\pi \operatorname{Im}(\tau))^6 |f(\tau)|$$

to sections of $\mathcal{L}(\mathbb{C})$ on X. We have then a metrized line bundle $(\mathcal{L}, \|.\|_{Pet})$ in the sense of Arakelov that is singular at (1, 0). To be able to define a height function we put the canonical metric $\|.\|_{can}$ over the finite places to have $(\mathcal{L}, \|.\|_v) = (\mathcal{L}, \|.\|_{v,can} \cup \|.\|_{v|\infty,Pet})$

Suppose that for each prime number p we have fixed an extension of the p-adic norm $|.|_p$ on $\overline{\mathbb{Q}}$. Also denote by $\mathcal{O}(\alpha)$ the orbit of $\alpha \in \overline{\mathbb{Q}}$ under the Galois group $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$. Then, as an application of definition 1.10 for the section Δ , the Falting height can be expressed as:

$$h_{Fal}(\alpha) = \frac{1}{12} \left(\frac{1}{\#\mathcal{O}(\alpha)} \sum_{\alpha' \in \mathcal{O}(\alpha)} g_{hyp}(\alpha') + \frac{1}{\#\mathcal{O}(\alpha)} \sum_{p \text{ prime } \alpha' \in \mathcal{O}(\alpha)} \log^+ |\alpha'|_p \right),$$

where the function $g_{hyp} : \mathbb{C} \longrightarrow \mathbb{R}$ is defined to be the function such that $g_{\infty} = g_{hyp} \circ j$ and the hyperbolic Green function $g_{\infty} : \mathbb{H} \longrightarrow \mathbb{R}$ is defined by

$$g_{\infty}(\tau) = -\log(\|\Delta(\tau)\|_{Pet}) = -\log((4\pi \operatorname{Im}(\tau))^{6}|\Delta(\tau)|).$$

We want to consider not only line bundle but also real line bundles, or at least, the notion of real global sections with positive coefficients

$$s = s_1^{\otimes a_1} \otimes \cdots \otimes s_l^{\otimes a_l} \in \bigsqcup_{n \ge 0} \Gamma(\mathcal{X}, \mathcal{L}^{\otimes n}) \otimes \mathbb{R}^+,$$

where $s_i \in \bigsqcup_{n \ge 0} \Gamma(\mathcal{X}, \mathcal{L}^{\otimes n})$ and a_1, \ldots, a_l are positive real numbers. The support of s is given by $|\operatorname{div}(s)| = \bigcup_k |\operatorname{div}(s_k)|$ and the Green function g_s associated to the section s will be

$$g_s(x) = -\log \|s(x)\|_{Pet} = -\log \prod_{j=1}^l \|s_j(x)\|_{Pet}^{a_j}$$

Proposition 1.16. Let s be a real section of weight one and $x \in \mathcal{X}(\mathbb{C}) \setminus |\operatorname{div}(s)|$ and algebraic point then we have the inequality:

$$h_{Fal}(x) \ge \inf_{y \in \mathcal{X}(\mathbb{C})} g_s(y) = -\log \sup_{y \in \mathcal{X}(\mathbb{C})} \|s(y)\|_{Pet}.$$

In particular we obtain $\mu_{Fal}^{ess} \ge \inf_{y \in \mathcal{X}(\mathbb{C})} g_s(y)$.

Proof. The proof is based on the fact that the finite places have a nonnegative contribution to the height. Choose a representation of s as $s = s_1^{\otimes a_1} \otimes \cdots \otimes s_l^{\otimes a_l}$ and $K = \mathbb{Q}(x)$. Also denote by Σ the set of places over infinity.

$$h_{Fal}(x) = \sum_{i=1}^{k} \frac{a_i}{[K:\mathbb{Q}]} \left(\sum_{v \text{ finite}} \log^+ \|s(\xi)\|_{can,v} - \sum_{v|\infty} \log \|s(\xi)\|_{Pet,v} \right)$$
$$\geq \sum_{i=1}^{k} \frac{a_i}{[K:\mathbb{Q}]} \left(-\sum_{v|\infty} \log \|s(\xi)\|_{Pet,v} \right)$$
$$= \frac{1}{[K:\mathbb{Q}]} \sum_{\sigma \in \Sigma} g_s(\sigma(x))$$
$$\geq \inf_{y \in \mathcal{X}(\mathbb{C})} g_s(y).$$

Therefore for a real section s of \mathcal{L} and $x \in \mathcal{X}(\mathbb{C}) \setminus |\operatorname{div}(s)|$ we have $h_{Fal}(x) \geq \inf_{y \in \mathcal{X}(\mathbb{C})} g_s(y)$ and as a consequence $\mu_{Fal}^{ess} \geq \inf_{y \in \mathcal{X}(\mathbb{C})} g_s(y)$.

Example 1.17. For $\alpha = j(E_{\alpha}) \in \{0, 1\}$, like for example $\tau = \frac{1+\sqrt{3}i}{2}$ that has *j*-invariant zero, the equation above gives $h_{Fal}(\alpha) = \frac{1}{12}g_{hyp}(\alpha)$.

In the following we consider $\rho = e^{\pi i/3}$ and denote by \mathcal{T} the fundamental domain

$$\mathcal{T} = \{ z \in \mathbb{C} : \operatorname{Im}(z) > 0, |z| > 1 \text{ and } \operatorname{Im}(z) < 1/2 \}.$$

Some properties of the functions g_{∞} and g_{hyp} are:

Lemma 1.18. For every $\tau \in \mathcal{T}$ we have $g_{\infty}(\tau) \geq g_{\infty}(.5+i \operatorname{Im}(\tau))$ with equality if and only if $\Re(\tau) = .5$. Moreover the function $t \mapsto g_{\infty}(.5+it)$ is strictly increasing on $\left[\frac{\sqrt{3}}{2},\infty\right)$ and in particular attains its minimum at $\xi = 0$.

Proof. This is lemma in 3.1 in [4]. It is a consequence of the vanishing properties of the normalized Eisenstein series E_2^* on the orbits of i and ρ under $\operatorname{Sl}_2(\mathbb{Z})$. Consider the real valued function $l : \mathbb{R} \longrightarrow \mathbb{R}$ given by $l(x) = g_{\infty}(s + i \operatorname{Im}(\tau))$. The derivative

$$l'(s) = 2\Re(\delta g_{\infty}(s+i\operatorname{Im}(\tau))) = 2\pi\operatorname{Im}(E_{2}^{*}(s+i\operatorname{Im}(\tau))),$$

and this last one is zero only if $\Re(s) = 0$ or $\Re(s) = .5$. Now from the product formula for

$$\Delta = q \prod_{n=1}^{\infty} (1 - q^n)^{24}$$

is clear that $|\Delta(i \operatorname{Im}(\tau))| \leq |\Delta(.5 + \operatorname{Im}(\tau))|$. For the second part, consider the function $h: (0, \infty) \longrightarrow \mathbb{R}$ defined by $h(t) = g_{\infty}(.5 + it)$.

6

The function h satisfies

 $h'(t) = -2\operatorname{Im}(\delta g_{\infty}(.5+it)) = 2\pi\Re(E_2^*(.5+2it)) = 2\pi E_2^*(.5+it).$

Now, using that the function E_2^* vanishes only at orbit of i and ρ , we get that h' does not vanishes in $(\frac{\sqrt{3}}{2}, \infty)$.

Lemma 1.19. Let $g_{hyp} : \mathbb{C} \longrightarrow \mathbb{R}$ be the function defined by the expression $g_{\infty} = g_{hyp} \circ j$. Then we have $0 < \delta_x g_{hyp}(1) < 1$ and the function $g_1 : \mathbb{C} \setminus \{0\} \longrightarrow \mathbb{R}$ defined by $g_1(\xi) = g_{hyp}(\xi) - \delta_x g_{hyp}(1) \log |\xi|$, attains its minimum value at, and only at, $\xi = 1$.

This is proposition A in [4]. The idea of the proof is to translate the analysis from the upper half-plane \mathbb{H} to the unit disk \mathbb{D} using the map

$$\psi(w) = \frac{\rho w + \rho}{w + 1} : \mathbb{H} \longrightarrow \mathbb{D}.$$

Now we can define the functions

$$j_{\mathbb{D}} = j \circ \psi : \mathbb{D} \longrightarrow \mathbb{C}, \qquad g_{\mathbb{D}} = g_{\infty} \circ \psi : \mathbb{D} \longrightarrow \mathbb{R},$$

and

$$f: \mathbb{D} \longrightarrow \mathbb{C}$$
 defined by $f(w^3) = j_{\mathbb{D}}(w)$.

Using these function an estimate for $\delta_x g_{hyp}(1)$ stronger that the needed inequality $0 < \delta_x g_{hyp}(1) < 1$ can be actually proved. It can be proved

$$\frac{1}{1032} \le \delta_x g_{hyp}(1) \le \frac{1}{1025}.$$

For the second part of the lemma, the proof of $g_1(\xi) \ge g_1(1)$ for all $\xi \ne 0$ is divided in three cases according to the value of $\text{Im}(\tau)$, where $\tau \in T$ and $j(\tau) = \xi$:

case 1. $\operatorname{Im}(\tau) \geq 1$. For $\tau \in \mathbb{H}$ satisfying $\operatorname{Im}(\tau) \geq 1$. case 2. $\frac{1}{\pi} \log(19) \leq \operatorname{Im}(\tau) \leq 1$. case 3. $\operatorname{Im}(\tau) \leq \frac{1}{\pi} \log(19)$.

Theorem 1.20. The first and second minima for the Falting height are $h_{Fal}(0)$ and $h_{Fal}(1)$. We have the inequality

$$h_{Fal}(0) < h_{Fal}(1) < \mu_{Fal}^{ess}.$$

Proof. This is theorem 1 in [4]. It is obtained as a consequence of lemma 1.18 and lemma 1.19 in the same paper. By lemma 1.18 we know that

$$h_{Fal}(1) = \frac{1}{12}h_{hyp}(1) > \frac{1}{12}h_{hyp}(0) = h_{Fal}(0)$$

To prove the rest of the result it is enough to find $\kappa > 0$ such that for every algebraic number $\alpha \neq 0, 1$ we have $h_{Fal}(\alpha) \geq h_{Fal}(1) + \kappa$.

JORGE PINEIRO

We are going to use proposition 1.16 for a different section of weight 12, namely $s = (j-1)^{\epsilon} j^{\partial_x g_{hyp}(1)} \Delta$ where ϵ sufficiently small. We will actually consider $\epsilon \in (0, 1 - \partial_x g_{hyp}(1))$ (this last interval is non-empty by lemma 1.19). We construct, for each prime p, the non-negative function $G_{\epsilon,p} : \mathbb{C}_p \setminus \{0, 1\} \longrightarrow \mathbb{R}$ defined by

$$G_{\epsilon,p}(z) = \log^+ |z|_p - \partial_x g_{hyp}(1) \log |z|_p - \epsilon \log |z-1|_p.$$

On the other hand for places at infinity, for each $\epsilon \in (0, 1 - \partial_x g_{hyp}(1))$ consider the function $G_{\epsilon} : \mathbb{C} \setminus \{0, 1\} \longrightarrow \mathbb{R}$ defined by the formula

$$G_{\epsilon}(z) = g_1(z) - \epsilon \log|z - 1| = g_{hyp}(z) - \partial_x g_{hyp}(1) \log|z| - \epsilon \log|z - 1|$$

The formula for the Falting height in terms of the Galois orbits, can be expressed using the functions G_{ϵ} and $G_{\epsilon,p}$ with the help of the product formula. We obtain:

$$12h_{Fal}(\alpha) = \frac{1}{\#\mathcal{O}(\alpha)} \sum_{\alpha' \in \mathcal{O}(\alpha)} G_{\epsilon}(\alpha') + \frac{1}{\#\mathcal{O}(\alpha)} \sum_{p \text{ prime } \alpha' \in \mathcal{O}(\alpha)} S_{\epsilon,p}(\alpha'),$$

and we need to show that $\inf_{\mathbb{C}\setminus\{0\}} G_{\epsilon}(z) > g_{hyp}(1)$. But the asymptotic of g_{hyp} coming from g_{∞} tell us that

$$g_{hyp}(z) = \log |z| - 6 \log(\log |z|) + O(1)$$
 as $z \longrightarrow \infty$.

Therefore for $\epsilon_0 > 0$ satisfying $\epsilon_0 + \partial_x g_{hyp}(1) < 1$ and $|z| > R_0$ we have that $G_{\epsilon}(z) \to \infty$ in z and then for any C > 0 fixed:

$$G_{\epsilon}(z) \ge g_{hyp}(1) + C.$$

By proposition 1.19 there is an $\epsilon \in (0, \epsilon_0)$ such that for some $\delta > 0$ and every z satisfying $|z - 1| \ge 1/2$ and $|z| \le R_0$ we have the bound

 $G_{\epsilon}(z) \ge g_{hyp}(1) + \delta.$

Again using proposition 1.19 for z satisfying $|z-1| \leq 1/2$ we have

$$G_{\epsilon}(z) = g_1(z) - \epsilon \log |z - 1| \ge g_{hyp}(z) + \epsilon \log(2)$$

which completes the proof of the theorem.

1.5. Toric Varieties. Toric varieties are algebraic varieties that admit a torus action. Let $\mathbb{T}^n = \mathbb{G}_m^n$ be the split algebraic torus over a field K. We clearly have an action $\mu : \mathbb{T}^n \times \mathbb{T}^n \longrightarrow \mathbb{T}^n$.

Definition 1.21. A toric variety with torus \mathbb{T}^n is a normal variety X such that $\mathbb{T}^n \subset X$ and the natural action μ extends to an action of \mathbb{T}^n on the whole X.

One possible construction of toric varieties uses rational polyhedral cones and fans. Let $N \cong \mathbb{Z}^n$ be a lattice of dimension n and let us denote $N_{\mathbb{R}} = N \otimes_{\mathbb{Z}} \mathbb{R}$. A strongly convex rational polyhedral cone is a set $\sigma \subset N_{\mathbb{R}} \cong \mathbb{R}^n$ such that:

- (1) It is convex, i.e. $\lambda x + (1 \lambda)y \in \sigma$ for $x, y \in \sigma$ and $\lambda \in [0, 1]$.
- (2) It is a cone, i.e. $\lambda x \in \sigma$ for $x \in \sigma$ and $\lambda \in \mathbb{R}^+$.
- (3) It is polyhedral, meaning that it is defined as intersection of semi-spaces $\sigma = \bigcap_i H_{u_i}^+$, where $u_i \in N_{\mathbb{R}}$ and

$$H_{u_i}^+ = \{ v \in N_{\mathbb{R}} \, | \, (v, u_i) \ge 0 \}.$$

- (4) It is rational, i.e. $u_i \in N$.
- (5) It is strongly convex, meaning that it does not contain a linear subspace other 0.

Definition 1.22. A face τ of σ is given by the intersection $\sigma \cap H_u$ with a semiplane, where $\sigma \subset H_u^+$. A one dimensional face is called a ray. A (n-1)-dimensional face is called a facet.

Definition 1.23. Let $M = \text{Hom}(N, \mathbb{Z})$ be the dual of N. The dual cone $\sigma^{\vee} \subset M_{\mathbb{R}} = M \otimes_{\mathbb{Z}} \mathbb{R}$ is given by

$$\sigma^{\vee} = \{ u \in M_{\mathbb{R}} \,|\, (u, v) \ge 0 \text{ for all } v \in N_{\mathbb{R}} \}.$$

Remark 1.24. A cone σ is strongly convex if and only if the dual cone σ^{\vee} is of maximal dimension. If σ is of maximal dimension and strongly convex, then the dual is given by $\sigma^{\vee} = \bigcap_i H_{u_i}^+$ where the set $\{u_1, \ldots, u_n\}$ generates σ .

Definition 1.25. Let σ be a strongly convex rational polyhedral cone. The affine toric variety X_{σ} associated to the cone σ is given by $X_{\sigma} =$ $\operatorname{Spec}(K[M_{\sigma}])$, where $K[M_{\sigma}]$ is the semi-group algebra generated by the integral points $M_{\sigma} = M \cap \sigma^{\vee}$ of the dual cone σ^{\vee} . To each element $m \in M_{\sigma}$ we will associate the character χ^m which can be identified with $t^m = t_1^{m_1} t_2^{m_2} \dots t_n^{m_n}$ via the map $\beta : M \longrightarrow \mathbb{Z}^n$. By Gordan's lemma, the ring $K[M_{\sigma}] = K[\chi_{M_{\sigma}}]$ is generated as K-algebra by the finitely many integral points in the unit cube of σ^{\vee} .

Definition 1.26. A fan Σ is a set or strongly convex rational polyhedral cones, such that if $\sigma, \sigma' \in \Sigma$, then $\sigma \cap \sigma' \in \Sigma$ and for all $\sigma \in \Sigma$, if $\tau \subset \sigma$ is a face of σ , then $\tau \in \Sigma$.

If τ is a face of σ , the map $\tau \hookrightarrow \sigma$ induces an open immersion $X_{\tau} \hookrightarrow X_{\sigma}$ and we can glue together X_{σ} and $X_{\sigma'}$ along $X_{\sigma \cap \sigma'}$ associated to their common face $\sigma \cap \sigma'$, to form the toric variety X_{Σ} .

JORGE PINEIRO

Example 1.27. Let Σ be a fan. (0) is a face of every $\sigma \in \Sigma$, thus $X_0 = \mathbb{T}^n$ is an open set in all X_{σ} and therefore in X_{Σ} . The action of X_0 on X_{σ} is defined as corresponding to the map $m \mapsto m \otimes m$ from M_{σ} to $M \otimes M_{\sigma}$.

Example 1.28. If we take the fan in \mathbb{R} made out of the three cones $\{0, \sigma_+ = \mathbb{R}^+ e_1, \sigma_- = \mathbb{R}^+ (-e_1)\}$ we get

$$X_{+} = \operatorname{Spec}(K[x]), \qquad X_{-} = \operatorname{Spec}(K[x^{-1}])$$

glued along $X_0 = \text{Spec}(K[x, x^{-1}])$ by the map $x \to x^{-1}$. This gives \mathbb{P}^1_K as a toric variety.

Example 1.29. In a similar way as we did to obtain \mathbb{P}^1 , we can consider the simplex $\Delta^n = conv(0, e_1, \ldots, e_n)$ and the fan Σ_{Δ^n} generated by

$$\{e_1, e_2, \dots, e_n, e_0 = -(e_1 + \dots + e_n)\},\$$

in the sense that the cones $\sigma \in \Sigma_{\Delta^n}$ are generated by a strict subset of the above set of vectors. The toric variety obtained is $X_{\Sigma} = \mathbb{P}^n$.

Let $v \in \mathcal{M}_{\mathbb{Q}}$ be a place of \mathbb{Q} and let $\mathbb{S}_v \subset \mathbb{T}_v^n$ be the compact invariant torus. In general \mathbb{S}_v is a compact analytic subgroup of \mathbb{T}_v^n defined as

$$\mathbb{S}_v = \{ P \in \mathbb{T}_v^n \, | \, \chi^m(P) | = 1 \, , \, \forall m \in M \}.$$

Example 1.30. $\mathbb{S}_{\infty} = (\mathcal{S}_{\mathbb{C}}^1)^n = \{(t_1, \dots, t_n) \in (\mathbb{C}^*)^n \mid |t_i| = 1 \text{ for all } i\}.$

Definition 1.31. Let $\overline{\mathcal{L}} = (L, \|.\|) = (\mathcal{L}, (\|.\|_v)_{v \in \mathcal{M}_{\mathbb{Q}}})$ be a metrized toric line bundle on the toric variety X. The metric $\|.\|$ is called toric if $\|.\|_v$ is \mathbb{S}_v -invariant for all v of $\mathcal{M}_{\mathbb{Q}}$.

Suppose that the fan Σ is complete. We have a valuation map

$$val_v: \mathbb{T}_v \subset X_v \longrightarrow N_{\mathbb{R}} \cong \mathbb{R}^r$$

given by $val_v(x_1, \ldots, x_n) = (-\log |x_1|_v, \ldots, -\log |x_n|)$. The fibre of val_v over $0 \in N_{\mathbb{R}}$ coincides with the compact invariant torus \mathbb{S}_v .

We will define now a family of functions $\varphi_v : N_{\mathbb{R}} \longrightarrow \mathbb{R}$ called the metric functions associated to the metrized toric line bundle $\overline{\mathcal{L}} = (\mathcal{L}, \{\|.\|_v\}_{v \in \mathbb{M}_0}).$

Definition 1.32. Let $\{\|.\|_v\}_{v\in\mathbb{M}_Q}$ be a toric metric on the toric line bundle \mathcal{L} . We define the metric function $\varphi_v: N_{\mathbb{R}} \cong \mathbb{R}^n \longrightarrow \mathbb{R}$ by

$$\varphi_v(u) = -\log \|s(P)\|_v,$$

where $u = val_v(P)$. It is well defined because a toric metric is \mathbb{S}_{v} -invariant.

10

Example 1.33. Consider the line bundle $\mathcal{L} = \mathcal{O}(D_{\Psi})$ associated to a divisor with support function Ψ . If $\|.\|$ is any toric metric on \mathcal{L} then the function $|\varphi_v - \Psi|$ is bounded.

Definition 1.34. A metric $\{\|.\|_v\}_{v\in\mathbb{M}_Q}$ on $\mathcal{O}(D_\Psi)$ is adelic if $\varphi_v = \Psi$ for all v except maybe a finite number.

Theorem 1.35. There is a bijection between the set of semi-positive adelic toric metrics on \mathcal{L} and the set of continuous concave functions $\{\psi_v\}_{v\in\mathbb{Q}}$ on $N_{\mathbb{R}}$ such that $|\psi_v - \Psi|$ is bounded and $\psi_v = \Psi$ for all v except maybe a finite number.

This is Theorem in 4.8.1 in [2].

Example 1.36. We can define a adelic metric on $\mathcal{O}(D_{\Psi})$, called the canonical metric $\|.\|_{\operatorname{can},v}$, by the equation

$$\log \|s_D(P)\|_{\operatorname{can},v} = \Psi_D(val_v(P)),$$

where $v \in \mathbb{M}_{\mathbb{Q}}$. The canonical metric is semi-positive if and only if D_{Ψ} is nef.

Remark 1.37. For a toric metric $\{\|.\|_v\}_{v\in\mathbb{M}_Q}$ on a toric line bundle $\mathcal{L} = \mathcal{O}(D_{\Psi})$ and $P \in X_0(\mathbb{Q})$ we have $\log \|s_D(P)\|_v = \varphi_{v,D}(val_v(P))$ for all places. The formula for the height of P becomes

$$h_{\bar{\mathcal{L}}}(P) = -\sum_{v \in \mathcal{M}_{\mathbb{Q}}} \log \|s(P)\|_{v} = -\sum_{v \in \mathcal{M}_{\mathbb{Q}}} \varphi_{v,D}(val_{v}(P)).$$

Definition 1.38. The v-adic roof function ϑ_v is given by the function $\vartheta_v : \Delta_{\mathcal{L}} \longrightarrow \mathbb{R}$ defined by the formula:

$$\vartheta_v(x) = \inf_{y \in \mathbb{R}^n} (x, y) - \varphi_v(y).$$

The global v-adic roof function is defined as $\vartheta = \sum_v \vartheta_v$. In the case of a semi-positive metric, the v-adic roof function coincide with the Legendre-Frechnel dual φ_v^{\vee} of the concave function φ_v .

Example 1.39. Suppose that X is the projective space as in example 1.29. The Legendre-Frechnel dual φ_{∞}^{\vee} of the function

$$\varphi_{\infty} = \Psi_{\Delta^n}(u_1, \dots, u_n) = \min(0, u_1, u_2, \dots, u_n)$$

is the indicator function $\varphi_{\infty}^{\vee} = i_{\Delta^n}$ of the associated polytope Δ^n .

Theorem 1.40. For a semi-positive metrized line bundle $\overline{\mathcal{L}} = \overline{\mathcal{O}(D_{\Psi})}$, the roof functions satisfy $\vartheta_v = 0$ for all v except maybe a final number. In fact we have a bijection between the set of semi-positive adelic toric metrics on \mathcal{L} and the set of continuous concave functions $\{\psi_v^{\vee}\}_{v\in\mathbb{Q}}$ on Δ_{Ψ} such that $\psi_v^{\vee} = 0$ for all v except maybe a finite number. This is Theorem 4.9.2 in [2].

Remark 1.41. For a toric metric $\{\|.\|_v\}_{v\in\mathbb{M}_Q}$ on a toric line bundle $\mathcal{L} = \mathcal{O}(D_{\Psi})$ and $P \in X_0(\mathbb{Q})$ we have $\sum_{v\in\mathbb{M}_Q} val_v(P) = 0$ and the height of P in the connected component X_0 of 0 satisfies

$$h_{\bar{\mathcal{L}}}(P) = \sum_{v \in \mathcal{M}_{\mathbb{Q}}} (x, val_v(P)) - \varphi_{v,D}(val_v(P)) \ge \sum_{v \in \mathcal{M}_{\mathbb{Q}}} \vartheta_v(x) = \vartheta(x),$$

for any $x \in \Delta_{\Psi}$. In particular, that absolute minimum $\mu_{\tilde{\mathcal{L}}}^{abs}(X_0) \geq \max_{x \in \Delta_{\Psi}} \vartheta(x)$. A sharper result is obtained in the following theorem.

Theorem 1.42. Let X be a proper toric variety over \mathbb{Q} and $\overline{\mathcal{L}} = \overline{\mathcal{O}(D)}$ a toric metrized \mathbb{R} -line bundle. Then

$$\mu^{ess}_{\overline{\mathcal{O}(D)}}(X) = \max_{x \in \Delta} \vartheta(x).$$

This is Theorem A (Corollary 3.10) in [3].

1.6. Curves on Products of the multiplicative group. Let G_m be the multiplicative group of dimension 1. Let us define a distance function by

$$d_{\infty}: (G_m^n)^2 \longrightarrow \mathbb{R}^+, \qquad d_{\infty}(x,y) = h(xy^{-1}).$$

Proposition 1.43. Let $C \subset (G_m^n)^2(\mathbb{Q})$, there exist a constant κ such that for all $x, y \in G_m^n(\overline{\mathbb{Q}})$ except at most a finite number,

$$d_{\infty}(x,y) \ge K.$$

This is Theorem 6.2 in [11], obtained as a consequence of positive selfintersection and the inequality between successive minima.

Theorem 1.44. For all algebraic numbers $\alpha \neq 0, 1, \frac{1 \pm \sqrt{3}i}{2}$, we have

$$h(\alpha) + h(1 - \alpha) \ge \frac{1}{2}\log\frac{1 + \sqrt{5}}{2} = .2406059...,$$

with equality if and only if alpha or $1 - \alpha$ is a primitive 10-th root of unity.

This is Theorem 1 in [10] and the proof is based on the following lemma in the same paper.

Lemma 1.45. For all $z \in \mathbb{C}$ and for all places v, if $n_v = 1, 2$ or 0 depending on the place v being real Archimedean, complex Archimedean

or non-Archimedean, we have:

 $\max(0, \log |z|_v) + \max(0, \log |1 - z|_v) \ge$

$$\geq \frac{\sqrt{5}-1}{2\sqrt{5}} \log |z^2 - z|_v + \frac{1}{2\sqrt{5}} \log |z^2 - z + 1|_v + \frac{n_v}{2} \log \frac{1+\sqrt{5}}{2}$$

Variety	Metric/height	L. bd. for μ^{ess}	Formula for μ^{ess}
(X, \mathcal{L}) Gen.Alg.Var	Semi-pos. smooth. met.	$\mu_{\overline{\mathcal{L}}}^{ess}(X) \ge \frac{h_{\overline{\mathcal{L}}}(X)}{(n+1)\deg_{\overline{\mathcal{L}}}(X)}$	
(X,φ) Dyn. Systems.	Canonical metric	$\mu_{\overline{\mathcal{L}}}^{ess}(X) \ge 0$	$\mu_{\overline{\mathcal{L}}}^{ess}(X) = 0$
Toric varieties	Toric metric	$\mu_{\overline{\mathcal{L}}}^{ess}(\overline{X}) \ge \mu_{\overline{\mathcal{L}}}^{abs}(X_0)$	$\mu_{\overline{\mathcal{L}}}^{ess}(X) = \max_{x \in \Delta} \vartheta(x)$
Mod. Space of E.C.	Faltings height	$h_{Fal}(1) =74862817$	
$x + y = 1 \subset (G_m)^2$	"Product height"	$\mu_{\overline{\mathcal{L}}}^{ess}(X) \ge \frac{1}{2} \log \frac{1+\sqrt{5}}{2}$	
$X \subset \text{toric variety}$	Toric metric		— <u> </u>

References

- V. G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, Math. Surveys Monogr., vol. 33, Amer. Math. Soc., (1990).
- [2] J. Burgos-Gil, P. Philippon, M. Sombra, Arithmetic Geometry of Toric Varieties: Metrics, Measures and Heights, Astérisque 360, (2014).
- [3] J. Burgos-Gil, P. Philippon, M. Sombra, Successive minima of toric height functions, Ann. Ins. Fourier (Grenoble) 65, 2145–2197 (2015).
- [4] J. Burgos Gil, R. Menares, J. Rivera-Letelier, On the essential minimum of Faltings' height, preprint available at arXiv:1609.00071 (2016).
- [5] A. Chambert-Loir, Mesures et quidistribution sur les espaces de Berkovich, J. Reine Angew. Math. 595, 215-235 (2006).
- [6] A. Chambert-Loir, Heights and measures on analytic spaces. A survey of recent results, and some remarks, Motivic integration and its interactions with model theory and non-Archimedean geometry. Volume II, London Math. Soc. Lecture Note Ser., vol. 384, Cambridge Univ. Press, 1-50 (2011).
- [7] W. Gubler, Basic properties of heights of subvarieties, Habilitation thesis, ETH Zrich, (2002).
- [8] R. T. Rockafellar, *Convex analysis*, Princeton Math. Series, vol. 28, Princeton Univ. Press, (1970).
- [9] L. Szpiro, E. Ullmo, and S. Zhang, *Équirépartition des petits points*, Invent. Math. 127, 337-347 (1997).
- [10] D. Zagier, Algebraic numbers close to both 0 and 1, Math. Comp. 61, 485–491 (1993).
- [11] S. Zhang, *Positive line bundles on arithmetic surfaces.*, Ann. of Math. 2 136, no. 3, 569–587 (1992).
- [12] S. Zhang, Positive line bundles on arithmetic varieties, J. Amer. Math. Soc. 8, 187–221 (1995).