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Projective modules

Definition

We say that an A-module M of finite type is locally free for the Zariski
topology if we can find elements {f1, . . . , fm} such that 〈f1, . . . , fm〉 = A
and Mfi is free over Afi .
A projective module of finite type M will be a module over A satisfying
any of the following equivalent conditions:

(1) The module M is locally free for the Zariski topology of Spec(A).

(2) For every prime ideal p, we have that Mp is a free Ap-module.

(3) The functor homA(M, .) is exact.

(4) M is a direct summand of a free module

Example

The free A-module M = AI is a projective A-module.
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Projective modules and invertible modules

Definition

Let A be a ring and M a projective A-module of finite type over A. The
function

r(M) : Spec(A) −→ N

that to a prime ideal p associates the dimension of the vector space
Mp/pMp over the field Ap/pAp, is locally constant.
One says that M is of rank n if the function r(P) : Spec(A) −→ N is
constant and equal to n.

Definition

Let A be a ring. We say that M is an invertible A-module if and only if
M is projective of rank one.
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Invertible modules

Proposition

Let M be an A-module and denote its dual by M∨ = HomA(M,A). The
following are equivalent

1 M is invertible,

2 M is finite locally free of rank one,

3 The canonical map of evaluation M ⊗A M∨ −→ A is an isomorphism,

4 There exist an A-module N such that M ⊗ N ∼= A.

Examples

Let A be an Dedekind domain with field of fractions K , 0 6= x ∈ A and
I ⊂ A ideal. We can define an invertible module as the fractional ideal

1

x
I ⊂ K .

Localization gives Discrete valuation rings and I becomes principal.
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The Picard group of a ring

Remark

if M is an invertible A-module, then the dual M∨ is also invertible. If M1

and M2 are invertible modules, the tensor product M1 ⊗M2 is also
invertible.

Proposition

The tensor product gives the set of isomorphism classes of invertible
A-modules, the structure of commutative group. The class of A is the
neutral element and the class of the dual is the inverse. This group is
called the Picard group of A and denoted Pic(A).

Remark

We denote a trivial Picard group by Pic(A) = 0.
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The Picard group of a ring

Example

If (A,m) is a local ring, then the Picard group is trivial: Pic(A) = 0.

Remark

Pic is a contravariant functor Pic : Rings −→ Abelian Groups determined
by the maps A 7→ Pic(A) and M 7→ M ⊗B A for any map f : B −→ A.

Remark

(Claborn 1966) All abelian groups arises as the Picard group of some
Dedekind domain!
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Rings of dimension zero

Proposition

For a noetherian ring A of dimension zero we have the following:

A is artinian.

A has finite length.

For a module M over A, there is finite list m1,m2, . . . ,mr of maximal
ideals of A such that Mmi 6= 0. Then the application:

M −→
r∏

i=1

Mmi

is an isomorphism. As a consequence, for a noetherian ring of
dimension zero, Pic(A) = 0.
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Modules of trivial Picard group

A number of rings have trivial Picard groups. This means that locally free
modules of rank one are in fact free.

Proposition

The following rings have trivial Picard group:

(1) A local ring A.

(2) A noetherian ring A of dimension zero.

(3) A unique factorization domain A.

(4) A principal ideal domain A.

Since UFD and local rings can have any dimension, we know that there are
rings of arbitrary dimension with trivial Picard group.
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Number fields

A field K that is a finite extension of the rational numbers is called: A
number field. The integer [K : Q] is called the degree of K .

Example

For example Q(i), with i2 = −1, is a number field of degree 2 over Q.

Definition

Let K be a number field and A ⊂ K a ring integral over Z such that the
fraction field of A is exactly K (A) = K . Such rings A are called orders of
the number field K .

Example

We have for example the orders Z[
√

5] and Z[1+
√
5

2 ] in the number field

Q(
√

5).
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Number fields

Definition

Let K be a number field. We call ring of integers of K to the integral
closure OK of Z in K .

Remark

Let K be a quadratic extension (degree 2). Then, there exist a d ∈ Z such
that K = Q(

√
d). Also, the ring of integers OK of K = Q(

√
d) is as

follows:

(a) If d ≡ 2, 3mod(4). The ring OK is Z + Z
√
d .

(b) If d ≡ 1mod(4). The ring OK is Z + Z(1+
√
d

2 ).
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Number fields

Corollary

Let A be an order in a number field K of degree n over Q and M be an
invertible A-module. Then M is a free Z -module of rank n. An order in a
number field is a noetherian ring of dimension one.

Definition

A noetherian ring integrally closed and of dimension one is called a
Dedekind ring.

Example

The ring of integers OK in a number field K is a Dedekind ring. The
localization Ap at any prime ideal p will be a discrete valuation ring.

Proposition

Let A be a Dedekind ring. Then every ideal of A is invertible.
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Picard group of a number fields

Proposition

Let A be an order in a number field K . Then Pic(A) is a finite group.

It be obtained as a consequence of Minkowski Theorem and some
properties of the norm function N : { ideals ⊂ A} −→ Z+.
Minkowski’s theorem guarantees the existence of a constant χ′(A) and a
surjection

N≤(A) −→ Pic(A) −→ 0,

where the set N≤(A) is made of ideals of bounded norm

N≤(A) = { ideals a ⊂ A |N(a) ≤ exp(−χ′(A))}.

The finiteness of the Pic(A) is a consequence of the finiteness lemma for
the norm.
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Picard group of a number fields

Example

Consider the maximal order (ring of integers) A = OK = Z[i ] in the
number field K = Q(i). The ring A is a UFD and Pic(A) = 0.
Again for the number field K = Q(

√
−5), the ring of integers is

A = OK = Z[
√
−5]. In this case, the ring A is not a UFD, we can have for

example
3× 3 = (2 +

√
−5)(2−

√
−5).

The Picard group contains two elements and is

Pic(A) = Z/2Z = 〈(2, 1 +
√
−5)〉.

We can check that I = (2, 1 +
√
−5) satisfies I 2 = (2).

.
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Schemes

Let A be a ring. The affine scheme (Spec(A),A) is the topological space

Spec(A) = {p | p ( A prime ideal },

together with the Zariski topology and a sheaf of rings A, in such a way
that for f 6= 0 ∈ A we have

A(Uf ) = local ring Af

for the open set Uf = {p | f /∈ p}.

Definition

A scheme (X ,OX ) is a locally ringed space that is locally isomorphic to
an affine scheme (Spec(A),A). The sheaf OX is called the structural sheaf
and X .

Example

The projective space Pn
A over a ring A is an example of a scheme that is

not affine.
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Schemes and invertible sheaves

Definition

An invertible sheaf over a scheme X is a quasi-coherent sheaf L such
that there exist a covering of X by open sets {Ui}i∈I such that
L|Ui w OUi

. Invertible sheaves are also called line bundles.

Remark

We can check that if U = Spec(A) is an affine open set of a scheme X
and L is an invertible sheaf on X , then L|U is the sheaf associated to a
projective A-module.

Example

On the projective space Pn
A, the twisted sheaves O(d) are invertible

sheaves for all d ∈ Z.
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Picard group of a scheme

Definition

The isomorphism classes of invertible sheaves on X with the tensor
product have the natural structure of abelian group. We called the Picard
group of X , denoted Pic(X ).

Example

The Picard group of an affine scheme Spec(A) coincide with the Picard
group of A as a ring.

Example

The Picard group of the affine scheme Cn is trivial Pic(Cn) = 0.
On the other hand, If a smooth affine curve X over C is obtained by
removing a point from a projective curve X̄ , then

Pic(X ) ∼= Jacobian of X̄ ∼= (R/Z)2g .
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Picard group and sheaf cohomology

Remark

For any short exact sequence of coherent sheaves on the scheme X

1 −→ A −→ B −→ C −→ 1,

the Sheaf cohomology consider the functor Γ(X , .) of global sections. We
get a long exact sequence of cohomology groups

→ H1(X ,A) −→ H1(X ,B) −→ H1(X , C) −→ H2(X ,A) −→ H2(X ,B)→

Remark

The group Pic(X ) has a cohomological interpretation as

Pic(X ) = H1(X ,O∗X ).
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Ample line bundles

Remark

Let X be a projective scheme and L a line bundle on X . We have the
following equivalences defining that L is ample:

1 There exist a power Lm and an immersion ι : X ↪→ Pn with
Lm = ι∗O(1).

2 For every quasi-coherent sheaf F of finite type on X , the sheaf
F ⊗ L⊗m is generated by its global sections for m >> 0.

3 For every quasi-coherent sheaf F of finite type on X , the map

H0(F ⊗ L⊗m,X )⊗OX −→ F ⊗L⊗m,

is surjective for m >> 0.
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Ample line bundles

Example

Consider for example the line bundle O(d) on a projective space X = Pn
A.

The sections over an open set U ⊂ X are

OX (d)(U) = { f
g
| g(x , y) 6= 0 and deg(

f

g
) = d}.

The global sections OX (d)(X ) will be polynomials of degree d and only
constants for the trivial structural sheaf OX .
For any d > 0, the line bundle O(d) is ample. For any projective scheme
Y ⊂ Pn, the restriction

OX (d) −→ OX (d)|Y

will be surjective on global sections for d big enough.
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Projective spaces over Z

Definition

The scheme X = Pn
Z is called the projective space over Z and is defined as

Proj(Z[X0, . . .Xn]). It has the following properties:

1 It comes equipped with a separated proper map Pn
Z −→ Spec(Z).

2 The generic fibre is Pn
Q −→ Spec(Q).

3 It is locally isomorphic to the affine space An
Z = Spec(Z[y1, . . . yn]).

4 The group of global sections H0(X ,OX ) = Z.

5 It is an (n + 1)-dimensional scheme, n-dimensional over the base Z.
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Projective line over Z
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Finite schemes have finite Picard group

Proposition

Let X ⊂ Pr
Z be a closed finite scheme. Then Pic(X ) is finite.

Proof.

Following Bruce and Eman, we are going to do two steps:
(1) Reduction to the reduced case: Consider the nilradical N with
Nm = 0 for some m > 1. Take X ′ ⊂ X to be the subscheme determined
by Nm−1. We have the exact sequence

1 −→ Nm−1 −→ O∗X −→ O∗X ′ −→ 1,

and since H1(X ,Nm−1) = H2(X ,Nm−1) = 0, the long exact sequence of
cohomology will give us

Pic(X ) = H1(X ,O∗X ) ∼= H1(X ′,O∗X ′) = Pic(X ′).
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Finite schemes have finite Picard group

Proposition

Let X ⊂ Pr
Z be a closed finite scheme. Then Pic(X ) is finite.

Proof.

(2) Assume that X = Spec(B), where B is a reduced and finite Z-algebra.
If p is a minimal prime of B, we have that B/p is either zero dimensional
or an order in a number field. In any case the Picard group Pic(B/p) is
finite. Consider now the intersection a of all the other minimal primes
other than p.

· · · −→ (B/(p + a))∗ −→ Pic(X ) −→ Pic(B/p)⊕ Pic(B/a) −→ · · ·

Now, since (B/(p + a))∗ is a finite set and B/a has fewer minimal primes
than B, we can proceed by induction on the number of minimal
primes.
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An application of finite Pic

We know that Bezout’s theorem asserts that for a pair (x , y) ∈ P1
Z we can

find a linear homogeneous polynomial f (u, v) = au + bv with
gcd(a, b) = 1 such that f (x , y) = 1.

Remark

The following result works instead with finite set of reduced lattice points
S = {(x1, y1), (x2, y2), . . . , (xn, yn)}.

Proposition

If S is a finite set of reduced lattice points (x , y), i.e., with gcd(x , y) = 1,
then there is a non-constant homogeneous polynomial f ∈ Z[x , y ] such
that f (x , y) = 1 for all (x , y) ∈ S .

A lattice point (x , y) with x , y ∈ Z and gcd(x , y) = 1 corresponds to a
section of P1

Z −→ Spec(Z). Consider the set S as a scheme S ⊂ P1
Z via

the union of the these sections.
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An application of finite Pic

For any positive integer d we have a restriction map O(d)P1 −→ O(d)|S .
For any section (x , y) : Spec(Z) −→ S we have also the pull-back
O(d)|S −→ O(d)Spec(Z). If we do the composition, the map

O(d)P1 −→ O(d)|S −→ O(d)Spec(Z)

corresponding to the section (x , y), gives the evaluation map
Z[x , y ]d −→ Z when restricted to global sections.
It will be sufficient to show that there exists a global section f of O(d)P1

that is nowhere zero. Since O(1)P1
Z

is ample, the map O(d)P1 −→ O(d)|S
will be surjective on global sections for d >> 0.
On the other hand, the scheme S made of finitely many points has finite
Picard group Pic(S).
As a consequence, for infinitely many powers d , the O(d)|S will be trivial
and the global sections will be just constants. By subjectivity, there will be
f ∈ Z[x , y ]d for d big enough mapping to a unit.
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Thanks!
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