
1. A presentation of the étale fundamental group

1.1. Preliminaries. A group G is pro-finite if it can be obtained as inverse limit of a system Gi of
finite groups with maps Gi → Gj for all i > j, satisfying the necessary properties. The pro-finite
completion of a group G is the inverse limit of the system consisting of finite quotients G/H, where H
is a normal subgroup of finite index. A pro-finite group comes equipped with the initial topology that
makes continuous all the projection maps pi : G→ Gi. The topology so defined is called the pro-finite
topology. One can take a basis for open sets made of the co-sets of the normal subgroups of finite
index.

Definition 1.1. Let (X,O(X)) and (X ′,O(X ′)) be schemes. A finite morphism φ : X ′ → X is locally
free if the direct image φ∗O(X ′) is locally free as an O(X)-module. If moreover each fibre X ′P is the
spectrum of a finite étale κ(P )-algebra, we have a finite étale morphism.

Remark 1.2. A finite morphism X ′ → X amounts to define a quasi-coherent O(X)-algebra A, that is
a locally of finite rank as an O(X)-module. The image of a finite étale morphism is both: open and
closed. It is open because φ∗O(X ′) being locally free, forces non-zero stalks over every open set. It is
closed because a finite map is stable under base change and therefore proper.

1.2. Anabelian Geometry. For a family of Schemes F (anabelian varieties) over certain types of
fields, we try to recover the isomorphism class of a scheme X ∈ F from the isomorphism class of a
pro-finite group πetale1 (X) associated to X. The construction of the étale fundamental group πetale1 (X) is
inspired by the known fact that the subgroups of the topological fundamental group πtop1 (X) correspond
to covering maps X ′ → X of a connected topological space X. Also, in the topological situation proper
curves of genus g > 1 over C are determined by their fundamental groups. When considering fields k
that are not algebraically closed we loose the machinery that we have over C and try to replace it with
the action of some absolute Galois group Gal(k̄|k); at the same time covering maps will be replaced
with finite étale covers.
The main example of anabelian varieties are hyperbolic curves over finitely generated extensions of
Q. Hyperbolic curves are curves obtained by taken smooth projective curves of genus g and removing
n > 2 − 2g points. The geometric étale group πetale1 (X × Spec(k̄)) of a hyperbolic curve will have no
center. Later we will see how center freeness plays a role when we try to recuperate the X from its
fundamental group.
For hyperbolic curves defined over finitely generated extensions k of Q, Mochizuki was able to prove a
conjecture of Grothendieck that allows to recover the hyperbolic curve X from its étale fundamental
group πetale1 (X). In mathematical terms the conjecture says that the functor π1 = πetale1 :

π1 : Hypk  Profext,openGal(k) ,

is fully faithful from the category Hypk of hyperbolic curve with dominant morphisms to the subcategory
Profext,openGal(k) of pro-finite with extra Galois action. We need to explain the nature of the étale fundamental

group as well as the meaning of the category Profext,openGal(k) .

1.3. The étale fundamental group. Let X be a connected scheme. Following the results on Galois
theory for coverings of topological spaces, we are going to consider the family Fét(X) of finite étale
covers of X. In the case of connected étale covers we have the following rigidity principle.

Proposition 1.3. Let X ′
φ−→ X a connected étale cover, then the non-trivial elements of Aut(X ′|X)

act without fix points on the fibres and therefore Aut(X ′|X) is a finite group.
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Proof. When we have maps φ1, φ2 : X ′ → X ′′ over X that coincide on a geometric point x̄′, then
we will have φ1 ≡ φ2. In effect by passing to X ′ × X ′′, it will be enough to prove it for sections
s1, s2 : X → X ′′ that coincide on a geometric point x̄. And this last case is true because the sections
s1, s2 : X → X ′′, will be étale maps with image being simultaneously open and closed. They will
represent then isomorphisms onto a whole connected component and therefore s1 = s2 on X. By
taking φ1 = φ and φ2 = φ ◦ λ for a non-trivial element λ ∈ Aut(X ′|X) we obtain the proposition. �

Remark 1.4. A section of an étale covering is an étale map. In general if X ′
φ−→ X and X ′′

ψ−→ X ′ are
morphism of schemes and φ ◦ ψ and φ are finite étale maps with φ separated, then the map ψ is also
finite étale. This is consequence of the fact that, when we denote the graph of ψ by Γψ : X ′′ → X ′′×XX

′

and p2 : X
′′ ×X X ′ → X ′, we can obtain ψ = p2 ◦ γ as a composition of finite étale maps. The graph

of ψ is finite étale without any assumptions because is the base change of the finite map diagonal
∆ : X → X ×X.

Definition 1.5. A finite étale connected cover is Galois if the group of automorphism Aut(X ′|X) acts
transitively on the fibres, and therefore is a finite group.

Let X be a connected scheme and x̄ : Spec(Ω) → X a geometric point, for Ω algebraically closed
field. We want to defined a functor on the family Fét(X) of finite étale covers of X. The functor is the

fibre functor Fibx̄ : Fét → Sets, that assigns to every element X ′
p−→ X of Fét(X), the underlying set

Fibx̄(X
′) of the fibre X ′ ×X Spec(Ω) over Spec(Ω).

Definition 1.6. The group π1(X, x̄) is by definition the group of automorphism f : Fibx̄ ≃ Fibx̄ of the
functor Fibx̄.

Remark 1.7. The group π1(X, x̄) is a pro-finite group that can be express as inverse limit of Aut(Pα|X)op

for the inverse system of Galois covers Pα → X. Once we have well-defined maps ϕα,β : Pα → Pβ for
α > β we can make the system of Galois covers into a directed system. The functor Fibx̄ is pro-
representable by the family of Galois covers in the sense that for all X ′ → X

lim
−→

Hom(Pα, X
′)
∼−→ Fibx̄(X

′),

and as a consequence
lim
←−

Aut(Pα|X)op
∼−→ Aut(Fibx̄)

∼−→ π1(X, x̄).

Example 1.8. In the case of X be a scheme over Spec(C) the π1(X̄, x̄) is nothing but the pro-finite

completion ̂πtop1 (X, x̄) of the topological fundamental group πtop1 (X, x̄). Pro-finite groups appear for the
first time when consider finite covering maps because whenever we have an action G×X → X and X
is finite, we can extend the action to a continuous action Ĝ ×X → X of the pro-finite completion of
Ĝ.

Remark 1.9. By definition π1(X, x̄) acts on the fibre Fibx̄(X
′) for all X ′

p−→ X in Fét(X). This action
is continuous when we have the discrete topology on the fibre and the pro-finite topology on π1(X, x̄).

Theorem 1.10. (Grothendieck) The functor Fibx̄ actually defines an equivalence of categories between
Fét(X) and finite sets with a continuous action by π1(X, x̄). In this correspondence connected covers
will correspond to finite sets with a transitive action by π1(X, x̄) and Galois covers will correspond to
finite quotients of π1(X, x̄).

Example 1.11. Let X = A an abelian variety defined over a algebraically closed field k, then π1(A) is

commutative and π1(A)
∼−→ T (A)

∼−→
∏

l Tl(A)
∼−→

∏
l limr A(k)lr .

Remark 1.12. Connected covers correspond to transitive action of the fundamental group G on finite
sets and therefore to the fibre being a coset space {gU} for some open subgroups U ⊂ G. In this way
trivial covers correspond to trivial action on the fibre or disjoint union of points G. The inclusion of
open sets V1 ⊂ V2 ⊂ G is equivalent to a map of covers X1 → X2.
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1.4. Properties of the fundamental group. Suppose that we have a morphism ϕ : X2 → X1 of
connected schemes together with geometric points x̄1 : Spec(Ω) → X1 and x̄2 : Spec(Ω) → X2, such
that x̄1 = ϕ ◦ x̄2. The base change will induce a continuous map

ϕ∗ : π1(X2, x̄2) → π1(X1, x̄1).

The base change BC gives a composition of functors Fibx̄1 = Fibx̄2 ◦BC and in this sense π1(X2, x̄2)
acts on Fibx̄1 via ϕ∗. On the other hand we can recover the base change X ′ → X ′×X1X2 as the functor
sending the π1(X1, x̄1)-set Fibx̄1(X

′) to the π1(X2, x̄2)-set obtained by composing with ϕ∗. In general
the map ϕ∗ is neither injective nor surjective.

Lemma 1.13. The map ϕ∗ is surjective if for every connected étale cover X ′ → X1 we obtain by base
change a connected étale cover X ′1 ×X1 X2 → X2,

Proof. When the map is onto, a transitive action of π1(X1, x̄1) in Fibx̄1(X
′) pulls back via ϕ∗ to a

transitive action of π1(X2, x̄2) on the fibre of the base change Fibx̄2(X
′ × X2). On the other hand if

Im(ϕ∗) is not the whole π1(X1, x̄1), there will be an open set U such that Im(ϕ∗) ⊂ U ⊂ π1(X1, x̄1).
The pull back of the connected cover associated to U will have a trivial action by π1(X2, x̄2) and will
be therefore a trivial cover not isomorphic to X2, hence not connected. �
Lemma 1.14. An open set U satisfies Im(ϕ∗) ⊂ U ⊂ π1(X1, x̄1) if and only if the pull back of the
connected cover associated to U admits a section over X2.

Proof. Im(ϕ∗) ⊂ U ⊂ π1(X1, x̄1) if and only if the connected étale cover associated to U pulls back
to the trivial cover and therefore π1(X2, x̄2) leaves the point s ∈ Fibx̄2(X

′ ×X1 X2) corresponding to
U fixed and hence, by remark 1.2, it fixes a whole connected component s̄. This provides a section
s : X2 → X ′ ×X2. �
Lemma 1.15. An open set U satisfies Ker(ϕ∗) ⊂ U ⊂ π1(X2, x̄2) if and only if for the finite étale
connected cover X ′′ → X2 associated to U there exist a morphism Xi → X ′′, where Xi is a connected
component of X ′ ×X1 X2 for some cover X ′ → X1.

Proof. A connected component Xi of X
′ ×X1 X2 can be identified with an open set Ui of π1(X2, x̄2)

and the connected cover X ′′ → X1 with an open set U ′′ ⊂ π1(X2, x̄2), the map Xi → X ′ exist if and
only if Ui ⊂ U ′′. Now the choice of Xi fixes a geometric point in the fibre where Ker(ϕ) acts trivially,
therefore Ker(ϕ∗) ⊂ Ui and Ker(ϕ∗) ⊂ U ′′. The other direction needs a topological lemma:

Lemma 1.16. (topological lemma) Let H ⊂ G be a closed subgroup and G pro-finite, then: the inter-
section of open subgroups containing H is precisely H and for every open subgroup V ′ ⊂ H there exist
V open in G such that V ′ = H ∩ V .

With the topological lemma in our hands we continue the proof of the lemma characterizing injec-
tivity. Suppose that Ker(ϕ∗) ⊂ U ′′, as H = ϕ∗π1(X2, x̄2) is closed because is compact and V ′′ = ϕ∗U

′′

is open in H (which is compact of finite index). By the topological lemma we can find an open set
V ⊂ π1(X1, x̄1) such that V ∩ H = V ′′ giving rise to a connected étale cover X ′ → X. A connected
component Xi of X

′ ×X1 X2 corresponds to some open set Ui ⊂ π1(X2, x̄2) and because ϕ∗Ui ⊂ V ′′ we
have Ui ⊂ U ′′ and therefore there is a map Xi → X ′. �
Lemma 1.17. The map ϕ∗ is injective if and only if for every connected étale cover X ′′ → X2 there
exist a connected finite étale cover X ′ → X1 and a map Xi → X ′′ where Xi is a connected component
of X ′ ×X2.

Proof. It follows from the characterization of the Im(ϕ∗) because the intersection of all open subgroups
is trivial. �
Lemma 1.18. Given X2

φ−→ X1
ψ−→ X0 and geometric points x̄2, x̄1, x̄0 respectively, the sequence

π1(X2, x̄2)
φ∗−→ π1(X1, x̄1)

ψ∗−→ π1(X0, x̄0)

is exact if it satisfies the two conditions:
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(i) For every finite connected étale cover X ′ → X the base change X ′ ×X X2 is trivial.
(ii) For every finite connected étale cover X ′ → X1, such that X ′×X1X2 → X2 has a section, there

exist a finite étale cover X ′0 → X and a morphism X i
0 → X ′ over X1, where X

i
0 is a connected

component of X0 ×X X1.

Proof. The first condition says that ψ∗ ◦ φ∗ is trivial. The second condition stays that if U is an open
set

Im(ψ∗) ⊂ U ⇒ Ker(φ∗) ⊂ U,

which is equivalent to Im(ψ∗) ⊂ Ker(φ∗). �

Theorem 1.19. Let X be a quasi-compact, integral and geometrically integral scheme over k. There
is an exact sequence of fundamental groups coming from the maps φ : X̄ = X ×Spec(k) Spec k̄ → X and
ψ : X → Spec(k):

1 → π1(X̄, x̄)
φ∗−→ π1(X, x̄)

ψ∗−→ π1(Spec(k), x̄) → 1

Proof. A finite étale cover Ȳ → X̄ can be obtained as Ȳ
∼−→ YL ×Spec(k) Spec(ks), for a finite cover YL

of XL = X ×Spec(k) Spec(L). This should take care of injectivity. The map ψ∗ is onto because X is
geometrically integral and therefore geometrically connected. The composition ψ∗ ◦ φ∗ is trivial. The
only other condition to check is condition (ii) for exactness in the middle. Suppose that Y → X is finite
Galois cover such that Yks → X̄ has a section. As X is integral, the generic fibre is Spec(K), where
K is a finite Galois extension of K(X) (separable comes from being étale and normal from integrality

or X). When tensoring with ks, this becomes Spec(K) ×Spec(k) Spec(ks)
∼−→ ks(X) × · · · × ks(X) and

therefore K = K(X) ⊗ L for some finite Galois extension. Considering the associated Galois cover

XL → X, we have for some open U , XL(U)
∼−→ Y (U) and because they are locally free, this forces

XL
∼−→ Y . �

Now, if X ′ → Spec(k) is a finite étale cover of X, then X ′ = Spec(L) where L is a finite étale algebra
and therefore a finite direct product of finite separable extensions of k . The fibre over a geometric
point Xx̄ can be identified with the set of homomorphisms Hom(L, ks) for a separable closure ks ⊂ k̄ of
k. In this way the action of π1(Spec(x), x̄) on the fibre can be identified with the action of Gal(ks/k) on
ks and the group π1(Spec(x), x̄) becomes naturally isomorphic to Gal(ks/k). So, the sequence becomes:

1 → π1(X̄, x̄)
φ∗−→ π1(X, x̄)

ψ∗−→ Gal(ks/k) → 1

There is a natural action of π1(X, x̄) on it normal subgroup π1(X̄, x̄), when we consider for every
element g ∈ π1(X, x̄) the automorphism of π1(X̄, x̄) defined by g → gxg−1. In particular when g is in
π1(X̄, x̄) we will get inner automorphisms. We have the commutative diagram:

1 −−−→ π1(X̄, x̄)
φ∗−−−→ π1(X, x̄)

ψ∗−−−→ Gal(ks/k) −−−→ 1y y yρX
1 −−−→ Inn(π1(X̄, x̄)) −−−→ Aut(π1(X̄, x̄)) −−−→ Out(π1(X̄, x̄)) −−−→ 1

The map ρX is called the outer Galois representation. It is continuous group homomorphism, because
so are the maps of pro-finite groups in the quotient.
For a group G, let us denote by Z(G) its center. We can extend the diagram to:
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1y
Z(π1(X̄, x̄))y

1 −−−→ π1(X̄, x̄)
φ∗−−−→ π1(X, x̄)

ψ∗−−−→ Gal(ks/k) −−−→ 1y y yρX
1 −−−→ Inn(π1(X̄, x̄)) −−−→ Aut(π1(X̄, x̄)) −−−→ Out(π1(X̄, x̄)) −−−→ 1y

1

As a consequence of this, we get that, when π1(X̄, x̄) is center free, the group π1(X, x̄) is simply the
fibre product of Aut(π1(X̄, x̄)) and Gal(ks/k) via ρX . So in this case the group π1(X, x̄) is determined
by the geometric object π1(X̄, x̄) plus an action of Gal(ks/k).

1.5. The exterior category of pro-finite groups over G. In this section we are going to be work
with schemes over k and consider pro-finite groups over G = Gal(ks|k). When k is a perfect field this
last group will just be G = Gal(k̄|k).
Let Gi

pi−→ G, for i = 1, 2, be pro-finite groups over G. Let G1
φ−→ G2 a map over G, in such a way

that the diagram commutes up to conjugation by g : G → G. The set Hom(G1, G2) carries an action
from the left and the right by G1 and G2 respectively. By properties of group homomorphisms, the
equivalent relation that we obtain when we mod out by the right action of G2 is finer. We want to
consider such action to build a new category with pro-finite groups as objects and this new type of
morphisms:

Homext
G (G1, G2) = Hom∗G(G1, G2)/(G2 − action)

Profext,openG = { object are pro-finite groups with morphisms as above and open images }
The following conjecture was stated by Grothendieck in a letter to Faltings:

Conjecture 1.20. (Relative Grothendieck) Let k be a finitely generated extension of Q. Let Hypk be
the category of hyperbolic curves over k equipped with dominant k-morphisms. The functor

π1 : Hypk  Profext,openG

is fully faithful.

A birrational analog will read:

Conjecture 1.21. (Birrational Grothendieck) Let k be a finitely generated extension of Q. Let Birdomk

denote the category of fields finitely generated over k together with k-morphisms. The contravariant
functor:

Gal : Birdomk  Profext,openG

is fully faithful.

Recall that hyperbolic curves are smooth projective curves of genus g with n points removed in such
a way that 2g−2+n > 0. The isomorphism version of the first conjecture is true for hyperbolic curves
even for finite extensions k of the p-adic fields Qp. That is, for X and X ′ hyperbolic k-curves:

Isomdom
k (X,X ′)

∼−→ Isomext,open
G (π1(X), π1(X

′)).

The isomorphism version of the second conjecture is true also for k finitely generated over Q or Qp. If
K,K ′ are finitely generated over k we have:

Isomk(K,K
′)
∼−→ Isomext

G (Gal(K),Gal(K ′)).
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The Neukirch-Ushida theorem for number fields is saying that a topological map Gal(k) → Gal(k′) be-
tween pro-finite topological groups, can be extended to an inner automorphism g → τgτ−1 of Gal(Q̄/Q)
conjugating the number field k to k′.

Theorem 1.22. (NU)For k, k′ finitely generated extensions of Q:

Isom(k̄/k, k̄′/k′)
∼−→ Isom(Gal(k),Gal(k′)).

The Neukirch-Ushida theorem allows us to pass from relative results to absolute results:

Theorem 1.23. (Mochizuki 2007) Let X, Y be hyperbolic curves defined over a finite extensions (pos-
sible distinct) of Q. The natural map

Isom(X,Y ) → Isomext(π(X), π(Y ))

is bijective.

Over finite extensions of Qp we do not have a theorem analogous to NU, and therefore we do not
expect to have an absolute result like the previous theorem.

1.6. Applications. In the following result we use Belyi’s theorem and the outer Galois representation
to embed the arithmetic group Gal(Q̄|Q) into the group Out(π1(P1

Q̄\{0, 1,∞})) of a topological nature.

Theorem 1.24. The outer Galois representation

ρP1\{0,1,∞} : Gal(Q̄|Q) → Out(π1(P1
Q̄ \ {0, 1,∞}))

is injective.

Proof. Let us denote U = P1 \ {0, 1,∞} and Ū = UQ̄. Suppose that the map is not injective, then, by
use of Galois theory and continuity of the map ρ, there exist an extension L/Q (maybe infinite) such
that the representation ρUL

: Gal(L) → Out(π1(Ū)) is trivial. The representation ρUL
comes from the

exact sequence

1 → π1(Ū)
φ∗−→ π1(UL)

ψ∗−→ Gal(Q̄|L) → 1.

To say that ρUL
is trivial means that, conjugation by an element y ∈ π1(UL) is the same as the

conjugation by an element x ∈ π1(Ū), and this means that yx−1 belong to the centralizer Z of π1(Ū) in
π1(UL). The group π1(Ū) is free in two generators and therefore has trivial center. Because of this, Z
and π1(Ū) has no intersection and π1(UL) is the direct product of π1(Ū) and Z and we have a retraction
map π1(UL) → π1(Ū). This implies that finite covers of Ū come from finite covers of UL. By Belyi’s
theorem this will implies that any integral proper curve defined over Q̄ can be defined over L, which is
a contradiction with the following example:

Example 1.25. Take an elliptic curve E with j-invariant j(E) /∈ L. It is not possible to find a proper

integral normal curve defined over L such that XQ̄
∼−→ E. Because if that were the case, the X will

have genus 1 and the Jac(X) will be an elliptic curve over L with Jac(X)
∼−→ E contradicting the fact

that j(E) /∈ L.

�
Proposition 1.26. Let X be an smooth projective integral scheme over C. The fundamental group
π1(X, x̄) is topologically finitely generated (contains a finitely generated dense subset) for every base
point.

Proof. For X a smooth, projective, integral scheme with dim(X) ≥ 2 and X ′ → X a finite étale cover,
we can find a hyperplane section H such that X∩H is smooth, connected and X ′×X (H∩X) → H∩X
is a connected étale cover. We have therefore a surjection π1(X ∩H, x̄)� π1(X, x̄), where X ∩H is of
dimension strictly smaller than X. When we repeat this argument we get

π1(C, x̄) → π1(X, x̄) → 1

for a smooth projective curve C over C and the results follows from the fact that the topological
fundamental group of a projective smooth curve has 2g generators. �
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In dimension one we have a very important type of étale covers. The integral closure A ⊂ B of Z
inside two fields K ⊂ L where the field extension L/K is unramified. An an example of unramified
extension we can take K = Q(

√
−5) and L = Q(

√
−1,

√
−5). In this case the ring of integers OL =

Z(
√
−1, 1+

√
−5

2
) and the relative discriminant dL/K is a unit.

Proposition 1.27. The affine scheme Spec(Z) is simply connected.

Proof. Suppose that X
φ−→ Spec(Z) is a finite connected étale cover, then X = Spec(A) where A is

an order in a number field K and, by a theorem of Minkowski [Szp], there will be rational primes
p = up(p1)

n1 . . . (pr)
nr with some ni > 1, namely the primes dividing the discriminant dA > 1 of A over

Z. So, every finite étale cover is trivial and therefore the group π1(Spec(Z)) is trivial. �
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