# MODULAR ARITHMETIC 

STUDENT:<br>PROF. PINEIRO


#### Abstract

We will introduce modular arithmetic. In particular we want to use quadratic reciprocity to determine whether or not a given number is a square modulo an odd prime. The plan is to produce a list of squares and non-squares for small prime moduli.


## 1. Project Description

Given an integer $n>1$, called a modulus, two integers are said to be congruent modulo $n$, if $n$ is a divisor of their difference (i.e., if there is an integer $k$ such that $a-b=k n$ ). Congruence modulo $n$ is an equivalence relation compatible with the operations of addition, subtraction, and multiplication. Congruence modulo $n$ is denoted:

$$
a \equiv b \quad(\bmod n)
$$

Remark 1.1. Two numbers $a, b$ are congruent $\bmod n$, if and only if they have the same remainder when divided by $n$. For example, $144 \equiv 74(\bmod 10), 18 \equiv 103(\bmod 5)$ or $-5 \equiv 4(\bmod 9)$. Any integer $a$ $\bmod (n)$ can be made congruent to an element in the set $\{0,1, \ldots, n-1\}$ by taking the remainder of the division of $a$ by $n$.

Some properties of modular congruency:
(1) (addition) If $a_{1} \equiv b_{1}(\bmod n)$ and $a_{2} \equiv b_{2}(\bmod n)$, then $a_{1}+a_{2} \equiv b_{1}+b_{2}(\bmod n)$.
(2) (subtraction) If $a_{1} \equiv b_{1}(\bmod n)$ and $a_{2} \equiv b_{2}(\bmod n)$, then $a_{1}-a_{2} \equiv b_{1}-b_{2}(\bmod n)$.
(3) (multiplication) If $a_{1} \equiv b_{1}(\bmod n)$ and $a_{2} \equiv b_{2}(\bmod n)$, then $a_{1} \cdot a_{2} \equiv b_{1} \cdot b_{2}(\bmod n)$.
(4) (inverse) There exists an integer denoted $a^{-1}$ such that $a \cdot a^{-1} \equiv 1(\bmod n)$ if and only if $a$ is coprime with $n$ (no number except 1 divide them both). This integer $a^{-1}$ is called a modular multiplicative inverse of a modulo $n$.
(5) (linear equations) If $a x \equiv b(\bmod n)$ and $a$ is coprime to $n$, then the solution to this linear congruence is given by $x \equiv a^{-1} b(\bmod n)$.
(6) (quadratic equations) An integer $a$ is a quadratic residue modulo $n$, if there exists an integer $x$ such that $x^{2} \equiv a(\bmod n)$. The Legendre symbol $\left(\frac{a}{p}\right)$, for a number $a$ and an odd prime $p$, is defined as

$$
\left(\frac{a}{p}\right)= \begin{cases}1 & \text { if } a \text { is a quadratic residue } \bmod n \\ -1 & \text { if } a \text { is a not quadratic residue } \bmod n \\ 0 & a \equiv 0 \quad(\bmod p)\end{cases}
$$

For example $\left(\frac{2}{7}\right)=1$ because $2 \equiv 3^{2} \equiv 9(\bmod 7)$, while $\left(\frac{5}{7}\right)=-1$ because there is not solution to $5 \equiv x^{2}(\bmod 7)$. Now the Legendre symbol satisfies the following properties:
(a) $\left(\frac{1}{p}\right)=1$,
(b) $\left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{2}}$,
(c) $\left(\frac{2}{p}\right)=(-1)^{\frac{p^{2}-1}{8}}$.
(d) It is completely multiplicative: $\left(\frac{a}{p}\right) \cdot\left(\frac{b}{p}\right)=\left(\frac{a b}{p}\right)$.
(e) If $a \equiv b(\bmod p)$, then $\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)$.
(f) (quadratic reciprocity law) For $p, q$ odd primes, we have $\left(\frac{q}{p}\right)=(-1)^{\frac{(p-1)(q-1)}{4}}\left(\frac{p}{q}\right)$. This means that if $p-1$ or $q-1$ is divisible by 4 , we have $\left(\frac{q}{p}\right)=\left(\frac{p}{q}\right)$, otherwise $\left(\frac{q}{p}\right)=-\left(\frac{p}{q}\right)$.
(g) (factor out squares) $\left(\frac{x^{2}}{p}\right)=1$ if $p$ does not divide $x$ and zero otherwise.

Example 1.2. Can we find a solution to the modular equation $x^{2} \equiv 60(\bmod 331) ?$
To solve this question, we need to compute the Legendre symbol $\left(\frac{60}{331}\right)$. If we get 1 , then answer is Yes. If we get -1 , the answer is Not (the only three answers are $0,1,-1$, and we can not get 0 because 15 is not divisible by 331 ).

$$
\begin{aligned}
\left(\frac{60}{331}\right) & =\left(\frac{2^{2}}{331}\right) \cdot\left(\frac{5}{331}\right) \cdot\left(\frac{3}{331}\right) \\
& =(1) \cdot\left(\frac{331}{5}\right) \cdot(-1) \cdot\left(\frac{331}{3}\right) \\
& =(1) \cdot\left(\frac{1}{5}\right) \cdot(-1) \cdot\left(\frac{1}{3}\right)=-1 .
\end{aligned}
$$

And the answer we get is that 60 is not a square module 331 . To actually check our result, we have to square each element $\{0,1, \ldots, 330\}$ to make sure that no answer will be $\equiv 60(\bmod 331)$.

Practice Questions:
(1) Find $x \in\{0,1, \ldots, 59\}$ such that $3333 \equiv x(\bmod 60)$.
(2) If $x=21$ and $y=12$. What is the value of $x y(\bmod 11)$ ?
(3) Find the value of $4^{3}(\bmod 15)$.
(4) If $x=28$ and $n=11$. Find $x^{n} \equiv(\bmod 29)$.
(5) Express the concepts of even and odd using modular congruency.
(6) Let $n$ be any odd number. Show that $n^{2}-1$ is always divisible by 4 .
(7) Find a solution of the linear equation $9 x \equiv 1(\bmod 7)$. Find a multiplicative inverse for 9 modulo 7 .
(8) Find a multiplicative inverse of 5 modulo 17. Use this inverse to find a solution of the linear equation $5 x \equiv 3(\bmod 17)$.
(9) Follow a exhaustive method, squaring all elements in $\{0,1, \ldots, 6\}$, to determine all elements that are square modulo 7 . What is the value of $\left(\frac{3}{7}\right)$ ?
(10) Follow a exhaustive method, squaring all elements in $\{0,1, \ldots, 10\}$, to determine all elements that are square modulo 11 . What is the value of $\left(\frac{3}{11}\right)$ ?
(11) Determine the symbols $\left(\frac{11}{3}\right)$ and $\left(\frac{7}{3}\right)$ and check in each case the quadratic reciprocity law using your answers above.
(12) Follow a exhaustive method, squaring all elements in $\{0,1, \ldots, 12\}$, to determine all elements that are square modulo 13 . What is the value of the symbols $\left(\frac{2}{13}\right),\left(\frac{3}{13}\right),\left(\frac{6}{13}\right)$. Verify the completely multiplicative property.
(13) Design and implement a program to calculate the Legendre symbol of numbers for small primes. Create a table of values of $\left(\frac{a}{p}\right)$, for example, for $a=0, \ldots, 30$ and $p=3,5,7,11, \ldots, 127$. This program can be part of a class ModuloN that mimic modular arithmetic mod N .

## References

[1] Lazar, Modular arithmetic available at https : //www2.math.upenn.edu/ mlazar/math170/notes06-2.pdf
[2] J. Silverman, A friendly introduction to Number Theory (third edition) Pearson, (2005)
[3] Wikipedia, Modular arithmetic available at https : //en.wikipedia.org/wiki/Modular_arithmetic

