THIRD EXAM, MATH 31: CALCULUS. FALL 2013

Do all questions and show all the work. The total number of points in the test is 111. Due 11/25/2013

- 1. (5 points) Find the limit $\lim_{t\to 0} \frac{\sqrt{1+t-\sqrt{1-t}}}{t}$.
- 2. (5 points) Find the value of c such that the function:

$$f(x) = \begin{cases} cx^2 + 2x, & x < 2\\ x^3 - cx, & x \ge 2 \end{cases}$$

is continuous on the real numbers $(-\infty, \infty)$.

- 3. (10 points) Given the polynomial function $f(x) = 3x^2 4x$:
 - (a) Find the slope of the tangent line at the point $x_0 = 1$ using the definition.
 - (b) Check your answer evaluating the derivative f'(x) of f(x) at $x_0 = 1$.
 - (c) Find the equation of the tangent line at $(x_0, f(x_0))$.
- 4. (20 points) Find the derivative of the following functions:

(a)
$$f(x) = 4\sin(3x^2 - 2x)$$

(a')
$$f(x) = (x^3 + 2x)(2x^4 - 1)$$

(a)
$$f(x) = 4\sin(3x^2 - 2x)$$
 (a') $f(x) = (x^3 + 2x)$
(b) $f(x) = 2\cos(-4x + 7x^2)$ (b') $f(x) = \frac{x^3 + 2x}{2x^4 - 1}$
(c) $f(x) = x(\ln(x) + x)$ (c') $f(x) = e^{\frac{1}{5}x^5 + 3x}$

$$(b')$$
 $f(x) = \frac{x^3 + 2x}{2x^4 - 1}$

(c)
$$f(x) = x(\ln(x) + x)$$

$$(c')$$
 $f(x) = e^{\frac{1}{5}x^5 + 3x}$

(d)
$$f(x) = \ln(3 + 2x^2)$$

(c')
$$f(x) = e^{\frac{\pi}{5}x^2 + 3x}$$

(d') $f(x) = \sqrt{-9x - 2}$

(e)
$$f(x) = \tan(3x - 1)$$

$$(e') \quad f(x) = e^{\frac{2x}{x-1}}$$

- 5. (10 points) Consider the function $f(x) = 3x^3 11x^2 + 8x + 4$.
 - (a) Find the critical points.
 - (b) Find the interval(s) where function is increasing interval(s) where it is decreasing.
 - (c) Find the local maxima and minima.
 - (d) Find the inflexion points.
 - (e) State the interval(s) where f is concave up and the interval(s) where it is concave down.
 - (f) Sketch the graph of the function.
- 6. Given the function $f(x) = e^x 3x$.
 - (a) (5 points) Apply the intermediate value theorem to show that there is a root of the equation f(x) = 0 between a = 0 and b = 1.
 - (b) (5 points) Use Newton's method with an initial approximation $x_1 = .5$ to find two iterations x_2 and x_3 . Give an approximation of the root of f(x) = 0 with two decimal places.
- 7. (5 points) Use linear approximation to estimate $\sqrt[3]{9}$.

8. (18 points) Find the antiderivatives in each case:

(a)
$$\int (x^2 - 5x^3 + 2)dx$$

(a')
$$\int (x + \sec^2(x)) dx$$

(b)
$$\int x \cos(-4x + 7x^2) dx$$

$$(b') \quad \int \frac{x^2}{2x^3 - 1} dx$$

(c)
$$\int 3x^3(x^4+1)^{1/3}dx$$

$$(c') \int (x^{1/2} + 3x) dx$$

9. (10 points) Find the area between the curves $y = x^2 - 2x - 3$ and the x-axis, when $0 \le x \le 4$.

10. (8 points) State the mean value theorem. Given the function $f(x) = x^2 - 5x + 3$, find a $c \in (0, 2)$ satisfying the conclusion of the mean value theorem.

11. (5 points) Use implicit differentiation to find $\frac{dy}{dx}$ if $x \sin(y) = y \sin(x)$.

12. (5 points) Given the function $f(x) = \frac{1}{x}$. Use 4 rectangles to approximate the area under the curve and between x = 2 and x = 3. Compare with exact value of the area $\int_1^2 1/x dx$.