MATH 23 - STATISTICS - THIRD TEST - FALL 2013

Do all questions and show all the work. The total number of points in the test is 106 . Due 11/25/2013

Part I (Descriptive Statistics)

1. (10 points) Find the mean, the mode, the first and third quartiles, the range, the median and standard deviation for the following set of sample data.
(a) $5,9,12,10,8,15,9,8,17$
2. The mean of the scores in a Statistics exam is 80.83 with standard deviation 2.2, use Tchebychev Theorem to:
(a) (2 points) Find an interval that contains at least 75% of the data.
(b) (2 points) Find an interval that contains at least 88.9% of the data.
3. The following table represents the results of the first quiz and the final exam on a sample of seven students of a Math Class at a college:

I quiz	50	50	70	70	98	80	98
Final	35	25	55	50	90	56	86

(a) (3 points) Draw the scattered plot of the set of data.
(b) (3 points) Interpret the fact that the correlation coefficient is $r=.977$
(c) (5 points) Plot the least square line $y=1.186 x-30.739$, make sure to include the point (\bar{x}, \bar{y}) and the y-intercept.
(d) (3 points) What will be the prediction for the final if the first quiz is 85 ?

Part II (Probability and discrete distributions)

1. Three cards are randomly selected from a standard 52 card deck without replacement. Find the probabilities of the following events:
(a) (3 points) All cards are Aces.
(b) (3 points) All cards are Diamonds.
(c) (3 points) First is a King, the second is an Ace and the third one is another Ace.
2. A number is selected randomly from the list $\{1,2,3,4,5,6,7,8,9,10\}$. Consider the following events:
$\mathrm{A}=$ The number selected is less or equal to $7 . \mathrm{B}=$ The number selected is more than 2 .
(a) (3 points) Compute $P(A)$ and $P(B)$.
(b) (3 points) Explain the meaning in this situation of the event $A \cap B$. Find $P(A \cap B)$.
(c) (3 points) Explain the meaning in this situation of the event $A \cup B$. Find $P(A \cup B)$.
3. A biologist is studying a new hybrid of tomato. It is known that the seeds of the hybrid have probability .70 of germinating. If six seeds are planted, what is the probability that
(a) (3 points) exactly 4 germinate?
(b) (3 points) at least 4 germinate?
4. A baseball player hits the ball 40% of the times. What is the probability of getting:
(a) (3 points) exactly four hits in 9 opportunities.
(b) (3 points) at most four hits in 9 opportunities.
(c) (5 points) If the random variable X represents the amount of hits in 9 opportunities, what kind of distribution of probability is represented in this experiment? what is the expected value μ and standard deviation σ ?
5. Consider the following probability distribution:

x	1	2	3	4	5
$\mathrm{P}(\mathrm{x})$.21	.12	.18	.25	

(a) (3 points) Complete the table and sketch the graph of the distribution.
(b) (5 points) Calculate the expected value.
(c) (5 points) Calculate standard deviation.

Part III (Continuous distributions and Estimation)

1. Sketch a graph that represents each of the following probabilities, when Z is distributed normal standard and find the actual probabilities.
(a) (3 points) $P(Z<-1.5)$
(b) (3 points) $P(-.72<Z<1.65)$
(c) (3 points) $P(Z>1.2)$
2. Let Z have a standard normal distribution. For each of the following probabilities, draw an appropriate diagram, shade the appropriate region and determine the value of Z_{c}.
(a) (3 points) $P\left(0<Z<Z_{c}\right)=.4671$
(b) (3 points) $P\left(Z_{c}<Z<0\right)=.2995$
3. (5 points) The weights of metal discarded in one week by households are normally distributed with a mean of 3.11 lb . and a standard deviation of .96 lb . Find the probability that a randomly selected household discards more that 3.00 lb . of metal in a week.
4. Let x be a random variable representing white blood cell count per cubic milliliter of blood. Assume that x has a normal distribution with $\mu=7500$ and $\sigma=1750$. A test result of $x<3500$ is an indication of bone marrow depression (Leukopenia).
(a) (5 points) What is the probability that, on a single test, x is less that 3500 .
(b) (5 points) Suppose that the doctor uses the average \bar{x} of two tests taken a week apart. What can we say about the distribution of \bar{x} ? What is the probability of $\bar{x}<3500$.
