POSITIVE LINEAR RECURRENT RELATIONS

MATHILDA ASEMOTA, JAHEIM ARCHIBALD, JORGE PINEIRO

ABSTRACT. We study necessary and sufficient conditions for some linear recurrent sequences to be positive for all indexes n.

1. Positive linear sequences

1.1. The question. We know that if we take the lengths of the sides of a triangle as an unordered triple (a, b, c), we will always have the inequalities

$$\begin{cases} a_1 = b + c - a > 0, \\ b_1 = a + c - b > 0, \\ c_1 = a + b - c > 0. \end{cases}$$

We would like to see if it is possible to continue the process and form a triangle with sides (a_1, b_1, c_1) and so on. The question can be put into a more general setting in terms of linear recurrent sequences. Given real numbers a, b, c, α and β , we want to study recurrent sequences $\{a_n\}, \{b_n\}$ and $\{c_n\}$ of real numbers defined in terms of initial values a, b, c and coefficients α, β . More precisely, these sequences $\{a_n\}, \{b_n\}, \{c_n\}$ satisfy $a_0 = a, b_0 = b, c_0 = c$ and are defined, for $n \ge 0$, by the recurrent relations

(1)
$$\begin{cases} a_{n+1} = \beta(b_n + c_n) + \alpha a_n, \\ b_{n+1} = \beta(a_n + c_n) + \alpha b_n, \\ c_{n+1} = \beta(a_n + b_n) + \alpha c_n. \end{cases}$$

The question we want to address is the following:

Question 1.1. For what values of (a, b, c, α, β) are the sequences $\{a_n\}$, $\{b_n\}$ and $\{c_n\}$ positive for all indexes $n \ge 0$?

Remark 1.2. For triples (a, b, c) of positive numbers and values of $\beta = 1$ and $\alpha = -1$, the question is equivalent to having a sequence of triangles with sides of lengths (a_n, b_n, c_n) for all $n \ge 0$. For instance, for (a, b, c) = (5, 5, 6) we observe already numbers that are not positive:

index n	(a_n, b_n, c_n)
0	(5, 5, 6)
1	(6, 6, 4)
2	(4, 4, 8)
3	(8, 8, 0)
4	(0, 0, 16)
5	(16, 16, -16)

The triangle T_2 with sides (4, 4, 8) is already degenerated.

On the other hand, we have the trivial case of the equilateral triangle (a, a, a) for any number a > 0 that generates constant sequences $a_n = b_n = c_n = a$ for all $n \ge 0$.

We can pose a second question:

Question 1.3. For what values (α, β) we get positivity of the sequences $\{a_n\}, \{b_n\}, \{c_n\}$ only in the trivial case a = b = c?

1.2. Necessary conditions and the trivial cases. We begin by making a few simple observations that we allow ourselves to focus on the most interested cases.

(1) A necessary condition for all sequences to be positive is that the numbers a, b, c > 0.

(2) Also, if a, b, c > 0 and $\alpha, \beta \ge 0$ (with $(\alpha, \beta) \ne (0, 0)$), the sequences $\{a_n\}, \{b_n\}$ and $\{c_n\}$ are clearly positive for all n.

(3) On the other hand, if $\alpha, \beta \leq 0$ (with a, b, c > 0), the first terms will already be $a_1, b_1, c_1 \leq 0$.

(4) The interesting case is then when a, b, c > 0 and α, β have different sign.

(5) Adding the three recurrent equations in (1) we obtain another necessary condition given by

 $2\beta + \alpha > 0.$

We will refer to the following cases as the trivial cases:

(1) When a = b = c > 0 is a positive number and $\alpha + 2\beta > 0$. In this situation we obtain the positive sequence

$$a_n = b_n = c_n = (\alpha + 2\beta)^n a$$
, for $n = 0, 1, 2...$

A triple (a, b, c) with a = b = c is said to be trivial for (α, β) .

(2) When $\alpha = \beta > 0$, a, b, c > 0, and we get the positive sequence

$$a_n = b_n = c_n = (3\beta)^n \left(\frac{a+b+c}{3}\right), \text{ for } n = 1, 2...$$

1.3. The explicit formulas and the notation. The explicit formulas for the a_n, b_n and c_n can be proven by induction to be:

(2)
$$\begin{cases} a_n = (2\beta + \alpha)^n \left(\frac{a+b+c}{3}\right) - (\alpha - \beta)^n \left(\frac{b+c-2a}{3}\right), \\ b_n = (2\beta + \alpha)^n \left(\frac{a+b+c}{3}\right) - (\alpha - \beta)^n \left(\frac{a+c-2b}{3}\right), \\ c_n = (2\beta + \alpha)^n \left(\frac{a+b+c}{3}\right) - (\alpha - \beta)^n \left(\frac{a+b-2c}{3}\right). \end{cases}$$

The positivity of $\{a_n\}, \{b_n\}, \{c_n\}$ is then equivalent to the following conditions:

(3)
$$\begin{cases} (2\beta + \alpha)^n \left(\frac{a+b+c}{3}\right) > (\alpha - \beta)^n \left(\frac{b+c-2a}{3}\right), \\ (2\beta + \alpha)^n \left(\frac{a+b+c}{3}\right) > (\alpha - \beta)^n \left(\frac{a+c-2b}{3}\right), \\ (2\beta + \alpha)^n \left(\frac{a+b+c}{3}\right) > (\alpha - \beta)^n \left(\frac{a+b-2c}{3}\right). \end{cases}$$

Let us assume that $\alpha \neq \beta$ and denote by τ and \bar{x} the values $\tau = \frac{2\beta + \alpha}{\alpha - \beta}$ and $\bar{x} = \frac{a + b + c}{3}$. The above conditions can be divided in two cases. For $\alpha > \beta$,

(4)
$$\begin{cases} \tau^n > \frac{\bar{x} - a}{\bar{x}}, \\ \tau^n > \frac{\bar{x} - b}{\bar{x} - c}, \\ \tau^n > \frac{\bar{x} - c}{\bar{x}}. \end{cases}$$

For $\beta > \alpha$,

 \overline{a}

(5)
$$\begin{cases} (-\tau)^n > (-1)^n \frac{x-u}{\bar{x}}, \\ (-\tau)^n > (-1)^n \frac{\bar{x}-b}{\bar{x}-c}, \\ (-\tau)^n > (-1)^n \frac{\bar{x}-c}{\bar{x}}. \end{cases}$$

1.4. The result. Let us assume that $\alpha \neq \beta$. The study of the sequences $\{(a_n, b_n, c_n)\}$ is going to be carry out with the use of the parameter $\tau = \frac{2\beta + \alpha}{\alpha - \beta}$. For the values of $|\tau| < 1$, we have the following remark:

Remark 1.4. If the absolute value $|\tau| = |-\tau| < 1$, the sequences $\{\tau^n\}$ and $\{(-\tau)^n\}$ satisfy

 $\tau^n \longrightarrow 0 \qquad and \qquad (-\tau)^n \longrightarrow 0$

and we will get, using inequalities (4) and (5), that

$$\bar{x} - a = \bar{x} - b = \bar{x} - c = 0$$

and therefore our trivial case (1), where all initial values must be equal: a = b = c. In other words, for values (α, β) with $|\tau| < 1$ and $\alpha \neq \beta$, for the sequences $\{a_n\}, \{b_n\}, \{c_n\}$ to be positive, the triple (a, b, c) must be trivial.

To deal with values of τ with absolute value $t = |\tau|$ greater or equal than one, we prove the following result.

Proposition 1.5. Suppose that $t \ge 1$ and L < 1. The following conditions are equivalent:

(1) $t^n > (-1)^n L$ for all $n \ge 0$. (2) t > -L. (3) t > |L|.

Proof. We do the implications: (1) \rightarrow (2): follows since (2) is just the special case of n = 1. (2) \rightarrow (3): assuming (2) we have

 $t > -L \Rightarrow -t < L < 1 \le t \Rightarrow |L| < t.$

 $(3) \rightarrow (1)$: follows since for $t \geq 1$

$$t^n \ge t > |L| \ge (-1)^n L$$

for all values of n.

Now, we are ready to put together all our results on several cases.

Proposition 1.6. Suppose that the initial values a, b and c are positive and the numbers $\alpha \neq \beta$ have different signs and satisfy $2\beta + \alpha > 0$. The possibilities for the sequences $\{a_n\}, \{b_n\}$ and $\{c_n\}$ to be positive for all values of n are as follows:

(1) For values $\alpha > -2\beta > 0$, we have $0 \le \tau < 1$ and the conclusion is

$$\{a_n\}, \{b_n\}, \{c_n\} > 0 \ \forall n \iff a = b = c.$$

(2) For values $0 < \beta < -2\alpha$, we have $0 \leq -\tau < 1$ and

 $\{a_n\}, \{b_n\}, \{c_n\} > 0 \quad \forall n \iff a = b = c.$

(3) For values $\beta \geq -2\alpha > 0$, we will get $1 \leq -\tau < 2$ and

 $\{a_n\}, \{b_n\}, \{c_n\} > 0 \ \forall n \iff a_1, b_1, c_1 > 0.$

Proof. In (1) we have $\alpha > 0, \beta < 0$ and

$$0 \le \frac{2\beta + \alpha}{\alpha - \beta} = \tau = 1 + \frac{3\beta}{\alpha - \beta} < 1.$$

In (2) we have $\beta + 2\alpha < 0$ with $\beta > 0, \alpha < 0$ and

$$0 \leq \frac{2\beta + \alpha}{\beta - \alpha} = -\tau = 1 + \frac{\beta + 2\alpha}{\beta - \alpha} < 1$$

The conclusion follows therefore from the inequalities (4) and (5) and remark 1.4. In case (3), since $\alpha < 0, \beta > 0$ and $\beta + 2\alpha \ge 0$, we observe that $1 \le -\tau < 2$ from the equalities

$$-\tau = \frac{2\beta + \alpha}{\beta - \alpha} = 2 + \frac{3\alpha}{\beta - \alpha} = 1 + \frac{\beta + 2\alpha}{\beta - \alpha}$$

Then, we use proposition 1.5 for $t = -\tau$ and $L = \frac{\bar{x} - a}{\bar{x}}$, $L = \frac{\bar{x} - b}{\bar{x}}$ and $L = \frac{\bar{x} - c}{\bar{x}}$ respectively, to obtain that the inequalities (5) are equivalent to

$$\begin{cases} -\tau > -\frac{\bar{x}-a}{\bar{x}},\\ -\tau > -\frac{\bar{x}-b}{\bar{x}-c},\\ -\tau > -\frac{\bar{x}-c}{\bar{x}}. \end{cases}$$

These, are at the same time, are equivalent to

$$\begin{cases} a_1 = (2\beta + \alpha) \left(\frac{a+b+c}{3}\right) - (\alpha - \beta) \left(\frac{b+c-2a}{3}\right) > 0, \\ b_1 = (2\beta + \alpha) \left(\frac{a+b+c}{3}\right) - (\alpha - \beta) \left(\frac{a+c-2b}{3}\right) > 0, \\ c_1 = (2\beta + \alpha) \left(\frac{a+b+c}{3}\right) - (\alpha - \beta) \left(\frac{a+b-2c}{3}\right) > 0, \end{cases}$$

which was the conclusion we wanted to reach.

Corollary 1.7. Suppose that we have a triple of positive numbers (a, b, c) and the numbers (α, β) satisfy $\beta \ge -2\alpha > 0$, then $\{a_n\}, \{b_n\}, \{c_n\} > 0$ for all $n \ge 0$ if and only if

$$-\frac{\beta}{\alpha} > \max\left(\frac{a}{b+c}, \frac{b}{a+c}, \frac{c}{a+b}\right).$$

In particular for any (α, β) with $\beta \ge -2\alpha > 0$, we can find infinitely many non-trivial triples (a, b, c) such that the sequences $\{a_n\}, \{b_n\}, \{c_n\} > 0$.

Proof. Since $\alpha < 0$, we can rewrite the inequalities $a_1 > 0$, $b_1 > 0$, $c_1 > 0$ as

$$-\frac{\beta}{\alpha} > \frac{a}{b+c} \qquad -\frac{\beta}{\alpha} > \frac{b}{a+c} \qquad -\frac{\beta}{\alpha} > \frac{c}{a+b}$$

and the first part follows from the theorem 1.6. For the second part, notice that $-\frac{\beta}{\alpha} \ge 2$. Let us choose any positive number c and two positive numbers a, b in the interval (0, c) with the condition $a + b > \frac{c}{2}$. By construction we will have

$$-\frac{\beta}{\alpha} \ge 2 > \frac{c}{a+b}, \qquad -\frac{\beta}{\alpha} \ge 2 > \frac{b}{c+b} \qquad \text{and} \qquad -\frac{\beta}{\alpha} \ge 2 > \frac{a}{c+b}$$

for any (a, b, c) chosen as indicated above. As a consequence (a, b, c) is non-trivial (a, b < c) and determine positive sequences $\{a_n\}, \{b_n\}, \{c_n\}$.

1.5. **Examples.** We are going to present several numerical examples. We begin by doing the geometric case of constructing the sequences of triangles.

Example 1.8. Let's go back again to our original motivation. Suppose that (a, b, c) are the sides of a triangle T and we take values of $\beta = 1$ and $\alpha = -1$. The positivity of the sequences

$$\begin{cases} a_{n+1} = b_n + c_n - a_n, \\ b_{n+1} = a_n + c_n - b_n, \\ c_{n+1} = a_n + b_n - c_n. \end{cases}$$

is equivalent to being able to construct an infinite sequence of triangles $\{T_{n+1}\}$ using $T_0 = T$ and half the length of the three segments of tangency from the vertices of T_n to the inscribed circle as sides of T_{n+1} . As in this case $0 < \beta < -2\alpha$, by theorem 1.6 (part 2), for the sequences to be positive, the initial values (a, b, c) must be trivial a = b = c and our initial triangle must be equilateral.

Example 1.9. Suppose that $\beta = 2$ and $\alpha = -1$ which satisfies $\beta \ge -2\alpha > 0$. Following corollary 1.7, we pick a number c, for example c = 1 and two numbers a, b in the interval (0, 1) such that a + b > 0.5. For example take a = .3, b = .25 and construct the table for the sequences (a_n, b_n, c_n) :

index n	(a_n, b_n, c_n)
0	(0.3, 0.25, 1)
1	(2.2, 2.31, 0.1)
2	(2.7, 2.25, 9.0)
3	(19.8, 21.15, 0.9)
4	(24.3, 20.25, 81.0)
5	(178.2, 190.35, 8.1)