PROJECTION OF MAPS AND PRE-PERIODIC VARIETIES

JORGE PINEIRO

In [GT09] the authors presented a contradiction to the dynamic Manin-Mumford conjecture using product of CM-elliptic curves. They consider maps $[\omega] \times [\omega'] : E \times E \longrightarrow E \times E$ on the product $E \times E$, where E is an elliptic with complex multiplication by ω, ω' . For $|\omega| = |\omega'| >$ 1 the system admits a polarization and therefore a height function $h_{[\omega] \times [\omega']}$. Besides, if ω/ω' is not equal to a root of unity, the diagonal subvariety $\Delta \subsetneq E \times E$ has the following properties:

- (i) Δ contains a Zariski dense set of preperiodic points and therefore $h_{[\omega] \times [\omega']}(\Delta) = 0$.
- (ii) Δ is not a preperiodic subvariety.

Similar properties can be found for the diagonal subvariety inside the product of projective lines. Any map $[\omega] : E \longrightarrow E$ on an elliptic curve E can be projected to a map $\varphi_{[\omega]}$ on \mathbb{P}^1 , when we mod out by the hyperelliptic involution $\pi : E \longrightarrow \mathbb{P}^1$. For $[\omega]$ and $[\omega']$ as in [GT09], the diagonal $\Delta' \subseteq \mathbb{P}^1 \times \mathbb{P}^1$ satisfies:

- (i) $h_{\varphi_{[\omega]} \times \varphi_{[\omega']}}(\Delta') = 0.$
- (ii) Δ' is not a preperiodic subvariety.

We are interested in the relation between properties of the orbits of Δ and Δ' . In a more general situation, consider the following commutative diagram in the category of projective algebraic varieties:

$$\begin{array}{ccc} X & \stackrel{\varphi}{\longrightarrow} & X \\ \pi & & & \downarrow \pi \\ \tilde{X} & \stackrel{\tilde{\varphi}}{\longrightarrow} & \tilde{X} \end{array}$$

and suppose that we have a polarization for $\tilde{\varphi}$, that is, a line bundle $\tilde{\mathcal{L}}$ on \tilde{X} that satisfies $\tilde{\varphi}^* \tilde{\mathcal{L}} \cong \tilde{\mathcal{L}}^{\otimes d}$ for some d > 1. Then the line bundle $\mathcal{L} = \pi^* \tilde{\mathcal{L}}$ will satisfy the equation $\varphi^* \mathcal{L} \cong \mathcal{L}^{\otimes d}$ and therefore constitutes a polarization for φ . Suppose now that X, \tilde{X}, φ and $\tilde{\varphi}$ are all defined over a number field K. We will have then two canonical

²⁰¹⁰ Mathematics Subject Classification. Primary: ; Secondary:

JORGE PINEIRO

height functions \hat{h}_{φ} , $\hat{h}_{\tilde{\varphi}}$ on X and \tilde{X} relative to the maps φ and $\tilde{\varphi}$. The height functions \hat{h}_{φ} , $\hat{h}_{\tilde{\varphi}}$ satisfy the following properties:

- (i) For $Y \subsetneq X$ a proper subvariety, we have $\hat{h}_{\varphi}(Y) = \hat{h}_{\tilde{\varphi}}(\pi(Y))$.
- (ii) For $Y = \{P\} \in X$, a point with the reduced structure of proper subvariety, P is preperiodic for φ if and only if $\pi(P)$ is preperiodic for $\tilde{\varphi}$.

Question 0.1. Is it true that $Y \subsetneq X$ is preperiodic for φ if and only if $\pi_*Y \subsetneq \tilde{X}$ is preperiodic for $\tilde{\varphi}$?

Let E be an elliptic curve with complex multiplication by a ring Rand $\omega, \omega' \in R$. Let $\pi : E \to \mathbb{P}^1$ be the map arising when we mod out by the hyperelliptic involution. In this project we propose to investigate the question for the diagram:

$$Y \subset E \times E \xrightarrow{([\omega], [\omega'])} E \times E$$
$$(\pi, \pi) \downarrow (\pi, \pi) \downarrow$$
$$\pi(Y) = Y' \subset \mathbb{P}^1 \times \mathbb{P}^1 \xrightarrow{(\varphi_{[\omega]}, \varphi_{[\omega']})} \mathbb{P}^1 \times \mathbb{P}^1$$

In the case of $Y = \Delta$, the diagonal subvariety, we already know:

Theorem 0.2. Let $\Delta \subsetneq E \times E$ and $\Delta' \subsetneq \mathbb{P}^1 \times \mathbb{P}^1$ denote respectively the diagonal subvarieties. Suppose that $\omega, \omega' \in R$, then Δ is preperiodic for $[\omega'] \times [\omega'] : E \times E \longrightarrow E \times E$ if and only if Δ' is preperiodic for $\varphi_{[\omega']} \times \varphi_{[\omega']} : \mathbb{P}^1 \times \mathbb{P}^1 \longrightarrow \mathbb{P}^1 \times \mathbb{P}^1$.

which is a consequence of the two lemmas:

Lemma 0.3. Δ is preperiodic for $[\omega] \times [\omega'] : E \times E \longrightarrow E \times E$ if and only if ω/ω' is a root of unity.

Proof. We reproduce here the proof in lemma 04 of [GT09]. Suppose that $([\omega]^{n+k}, [\omega']^{n+k})(\Delta) = ([\omega]^n, [\omega']^n)(\Delta)$ for some n, k > 0. Consider a non-torsion point $P \in E$, then there exist $Q \in E$ also non-torsion such that $([\omega]^{n+k}, [\omega']^{n+k})(P, P) = ([\omega]^n, [\omega']^n)(Q, Q)$. But then $[\omega]^{n+k}(P) = [\omega]^n(Q)$ and $[\omega']^{n+k}(P) = [\omega']^n(Q)$ or equivalently $[\omega]^n([\omega]^k(P) - Q) = 0$ and $[\omega']^n([\omega']^k(P) - Q) = 0$. These last two equations are saying that there are torsion points P_1, P_2 such that $[\omega]^k(P)-Q=P_1$ and $[\omega']^k(P)-Q=P_2$ and therefore $[\omega]^k(P)-[\omega']^k(P)$ will also be a torsion point, and that cannot be for P non-torsion unless $[\omega]^k - [\omega']^k = 0$ and therefore ω/ω' is a root of unity. Conversely, suppose that $[\omega]^k = [\omega']^k$, then $([\omega]^{n+k}, [\omega']^{n+k})(P) = ([\omega]^n, [\omega']^n)([\omega]^k(P))$ and because $[\omega]$ is surjective $([\omega]^{n+k}, [\omega']^{n+k})(\Delta) = ([\omega]^n, [\omega']^n)(\Delta)$. □ **Lemma 0.4.** Δ' is preperiodic for $\varphi_{[\omega']} \times \varphi_{[\omega']} : \mathbb{P}^1 \times \mathbb{P}^1 \longrightarrow \mathbb{P}^1 \times \mathbb{P}^1$ if and only if ω/ω' is a root ± 1 .

Proof. The proof is analogous to the case of Δ . Suppose that we have $(\varphi_{[\omega]}, \varphi_{[\omega']})^{n+k}(\Delta') = (\varphi_{[\omega]}, \varphi_{[\omega']})^n(\Delta')$ for some $n \ge 0$ and k > 0. Then $(\pi, \pi)([\omega]^{n+k}, [\omega']^{n+k})(\Delta) = (\pi, \pi)([\omega]^n, [\omega']^n)(\Delta)$ and for each $P \in E$ there will be $Q \in E$ with $([\omega]^{n+k}, [\omega']^{n+k})(P, P) = ([\omega]^n, [\omega']^n)(Q, \pm Q)$. But then $[\omega]^{n+k}(P) = [\omega]^n(Q)$ and $[\omega']^{n+k}(P) = [\omega']^n(\pm Q)$ or equivalently $[\omega]^n([\omega]^k(P) - Q) = 0$ and $[\omega']^n([\omega']^k(P) \mp Q) = 0$. These last two equations are saying that there are torsion points P_1, P_2 such that $[\omega]^k(P) - Q = P_1$ and $[\omega']^k(P) \mp Q = P_2$ and therefore $P_1 \mp P_2 = [\omega]^k(P) \mp [\omega']^k(P) = ([\omega]^k \mp [\omega']^k)(P)$ will also be a torsion point, and that cannot be if we choose P non-torsion unless $[\omega]^k \mp [\omega']^k = 0$ and $(\omega/\omega')^k = \pm 1$.

References

- [CS93] G. S. Call and J. Silverman, Canonical heights on varieties with morphism, Compositio Math. 89 (1993), 163–205.
- [Fak03] N. Fakhruddin Questions on self-maps on algebraic varieties J.Ramanujan Math.Soc., 18(2) (2003), 129-122.
- [GT08] D. Ghioca and T. J. Tucker, Proof of a dynamical Bogomolov conjecture for lines under polynomial actions, submitted for publication, 2008, available online at arXiv:0808.3263v2.
- [GT09] _____, Counterexample to Zhang's Dynamical Manin-Mumford conjecture, in preparation, 2009.
- [Har77] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics 52 (1977).
- [HS00] M. Hindry and J. Silverman, Diophantine Geometry: an introduction, Graduate Texts in Mathematics 201, 2000.
- [HS00] M. Hindry and J. Silverman, Diophantine Geometry: an introduction, Graduate Texts in Mathematics 201, 2000.
- [Ray83] M. Raynaud, Sous-varietes dune variete abelienne et points de torsion, Prog. Math. 35 (1983), 327-352.
- [Sil86] J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986.
- [Sil94] _____, Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 151, Springer-Verlag, New York, 1994.
- [Sil07] _____, The arithmetic of dynamical systems, Graduate Texts in Mathematics, vol. 241, Springer, New York, 2007.

JORGE PINEIRO: DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE. BRONX COMMUNITY COLLEGE OF CUNY. 2155 UNIVERSITY AVE. BRONX, NY 10453

E-mail address: jorge.pineiro@bcc.cuny.edu