PROJECTION OF MAPS AND PRE-PERIODIC VARIETIES

JORGE PINEIRO

In [GT09] the authors presented a contradiction to the dynamic Manin-Mumford conjecture using product of CM-elliptic curves. They consider maps $[\omega] \times\left[\omega^{\prime}\right]: E \times E \longrightarrow E \times E$ on the product $E \times E$, where E is an elliptic with complex multiplication by ω, ω^{\prime}. For $|\omega|=\left|\omega^{\prime}\right|>$ 1 the system admits a polarization and therefore a height function $h_{[\omega] \times\left[\omega^{\prime}\right]}$. Besides, if ω / ω^{\prime} is not equal to a root of unity, the diagonal subvariety $\Delta \subsetneq E \times E$ has the following properties:
(i) Δ contains a Zariski dense set of preperiodic points and therefore $h_{[\omega] \times\left[\omega^{\prime}\right]}(\Delta)=0$.
(ii) Δ is not a preperiodic subvariety.

Similar properties can be found for the diagonal subvariety inside the product of projective lines. Any map $[\omega]: E \longrightarrow E$ on an elliptic curve E can be projected to a map $\varphi_{[\omega]}$ on \mathbb{P}^{1}, when we mod out by the hyperelliptic involution $\pi: E \longrightarrow \mathbb{P}^{1}$. For $[\omega]$ and $\left[\omega^{\prime}\right]$ as in [GT09], the diagonal $\Delta^{\prime} \subsetneq \mathbb{P}^{1} \times \mathbb{P}^{1}$ satisfies:
(i) $h_{\varphi_{[\omega]} \times \varphi_{\left[\omega^{\prime}\right]}}\left(\Delta^{\prime}\right)=0$.
(ii) Δ^{\prime} is not a preperiodic subvariety.

We are interested in the relation between properties of the orbits of Δ and Δ^{\prime}. In a more general situation, consider the following commutative diagram in the category of projective algebraic varieties:

and suppose that we have a polarization for $\tilde{\varphi}$, that is, a line bundle $\tilde{\mathcal{L}}$ on \tilde{X} that satisfies $\tilde{\varphi}^{*} \tilde{\mathcal{L}} \cong \tilde{\mathcal{L}}^{\otimes d}$ for some $d>1$. Then the line bundle $\mathcal{L}=\pi^{*} \tilde{\mathcal{L}}$ will satisfy the equation $\varphi^{*} \mathcal{L} \cong \mathcal{L}^{\otimes d}$ and therefore constitutes a polarization for φ. Suppose now that X, \tilde{X}, φ and $\tilde{\varphi}$ are all defined over a number field K. We will have then two canonical

[^0]height functions $\hat{h}_{\varphi}, \hat{h}_{\tilde{\varphi}}$ on X and \tilde{X} relative to the maps φ and $\tilde{\varphi}$. The height functions $\hat{h}_{\varphi}, \hat{h}_{\tilde{\varphi}}$ satisfy the following properties:
(i) For $Y \subsetneq X$ a proper subvariety, we have $\hat{h}_{\varphi}(Y)=\hat{h}_{\tilde{\varphi}}(\pi(Y))$.
(ii) For $Y=\{P\} \in X$, a point with the reduced structure of proper subvariety, P is preperiodic for φ if and only if $\pi(P)$ is preperiodic for $\tilde{\varphi}$.
Question 0.1. Is it true that $Y \subsetneq X$ is preperiodic for φ if and only if $\pi_{*} Y \subsetneq \tilde{X}$ is preperiodic for $\tilde{\varphi}$?

Let E be an elliptic curve with complex multiplication by a ring R and $\omega, \omega^{\prime} \in R$. Let $\pi: E \rightarrow \mathbb{P}^{1}$ be the map arising when we mod out by the hyperelliptic involution. In this project we propose to investigate the question for the diagram:

$$
\begin{aligned}
& Y \subset E \times E \quad \xrightarrow{\left([\omega],\left[\omega^{\prime}\right]\right)} \quad E \times E \\
& { }_{(\pi, \pi)} \downarrow \\
& \pi(Y)=Y^{\prime} \subset \mathbb{P}^{1} \times \mathbb{P}^{1} \xrightarrow{\left(\varphi_{[\omega]}, \varphi_{\left[\omega^{\prime}\right]}\right)} \mathbb{P}^{1} \times \mathbb{P}^{1}
\end{aligned}
$$

In the case of $Y=\Delta$, the diagonal subvariety, we already know:
Theorem 0.2. Let $\Delta \subsetneq E \times E$ and $\Delta^{\prime} \subsetneq \mathbb{P}^{1} \times \mathbb{P}^{1}$ denote respectively the diagonal subvarieties. Suppose that $\omega, \omega^{\prime} \in R$, then Δ is preperiodic for $\left[\omega^{\prime}\right] \times\left[\omega^{\prime}\right]: E \times E \longrightarrow E \times E$ if and only if Δ^{\prime} is preperiodic for $\varphi_{\left[\omega^{\prime}\right]} \times \varphi_{\left[\omega^{\prime}\right]}: \mathbb{P}^{1} \times \mathbb{P}^{1} \longrightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$.
which is a consequence of the two lemmas:
Lemma 0.3. Δ is preperiodic for $[\omega] \times\left[\omega^{\prime}\right]: E \times E \longrightarrow E \times E$ if and only if ω / ω^{\prime} is a root of unity.
Proof. We reproduce here the proof in lemma 04 of [GT09]. Suppose that $\left([\omega]^{n+k},\left[\omega^{\prime}\right]^{n+k}\right)(\Delta)=\left([\omega]^{n},\left[\omega^{\prime}\right]^{n}\right)(\Delta)$ for some $n, k>0$. Consider a non-torsion point $P \in E$, then there exist $Q \in E$ also non-torsion such that $\left([\omega]^{n+k},\left[\omega^{\prime}\right]^{n+k}\right)(P, P)=\left([\omega]^{n},\left[\omega^{\prime}\right]^{n}\right)(Q, Q)$. But then $[\omega]^{n+k}(P)=[\omega]^{n}(Q)$ and $\left[\omega^{\prime}\right]^{n+k}(P)=\left[\omega^{\prime}\right]^{n}(Q)$ or equivalently $[\omega]^{n}\left([\omega]^{k}(P)-Q\right)=0$ and $\left[\omega^{\prime}\right]^{n}\left(\left[\omega^{\prime}\right]^{k}(P)-Q\right)=0$. These last two equations are saying that there are torsion points P_{1}, P_{2} such that $[\omega]^{k}(P)-Q=P_{1}$ and $\left[\omega^{\prime}\right]^{k}(P)-Q=P_{2}$ and therefore $[\omega]^{k}(P)-\left[\omega^{\prime}\right]^{k}(P)$ will also be a torsion point, and that cannot be for P non-torsion unless $[\omega]^{k}-\left[\omega^{\prime}\right]^{k}=0$ and therefore ω / ω^{\prime} is a root of unity. Conversely, suppose that $[\omega]^{k}=\left[\omega^{\prime}\right]^{k}$, then $\left([\omega]^{n+k},\left[\omega^{\prime}\right]^{n+k}\right)(P)=\left([\omega]^{n},\left[\omega^{\prime}\right]^{n}\right)\left([\omega]^{k}(P)\right)$ and because $[\omega]$ is surjective $\left([\omega]^{n+k},\left[\omega^{\prime}\right]^{n+k}\right)(\Delta)=\left([\omega]^{n},\left[\omega^{\prime}\right]^{n}\right)(\Delta)$.

Lemma 0.4. Δ^{\prime} is preperiodic for $\varphi_{\left[\omega^{\prime}\right]} \times \varphi_{\left[\omega^{\prime}\right]}: \mathbb{P}^{1} \times \mathbb{P}^{1} \longrightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ if and only if ω / ω^{\prime} is a root ± 1.

Proof. The proof is analogous to the case of Δ. Suppose that we have $\left(\varphi_{[\omega]}, \varphi_{\left[\omega^{\prime}\right]}\right)^{n+k}\left(\Delta^{\prime}\right)=\left(\varphi_{[\omega]}, \varphi_{\left[\omega^{\prime}\right]}\right)^{n}\left(\Delta^{\prime}\right)$ for some $n \geq 0$ and $k>0$. Then $(\pi, \pi)\left([\omega]^{n+k},\left[\omega^{\prime}\right]^{n+k}\right)(\Delta)=(\pi, \pi)\left([\omega]^{n},\left[\omega^{\prime}\right]^{n}\right)(\Delta)$ and for each $P \in E$ there will be $Q \in E$ with $\left([\omega]^{n+k},\left[\omega^{\prime}\right]^{n+k}\right)(P, P)=\left([\omega]^{n},\left[\omega^{\prime}\right]^{n}\right)(Q, \pm Q)$. But then $[\omega]^{n+k}(P)=[\omega]^{n}(Q)$ and $\left[\omega^{\prime}\right]^{n+k}(P)=\left[\omega^{\prime}\right]^{n}(\pm Q)$ or equivalently $[\omega]^{n}\left([\omega]^{k}(P)-Q\right)=0$ and $\left[\omega^{\prime}\right]^{n}\left(\left[\omega^{\prime}\right]^{k}(P) \mp Q\right)=0$. These last two equations are saying that there are torsion points P_{1}, P_{2} such that $[\omega]^{k}(P)-Q=P_{1}$ and $\left[\omega^{\prime}\right]^{k}(P) \mp Q=P_{2}$ and therefore $P_{1} \mp P_{2}=$ $[\omega]^{k}(P) \mp\left[\omega^{\prime}\right]^{k}(P)=\left([\omega]^{k} \mp\left[\omega^{\prime}\right]^{k}\right)(P)$ will also be a torsion point, and that cannot be if we choose P non-torsion unless $[\omega]^{k} \mp\left[\omega^{\prime}\right]^{k}=0$ and $\left(\omega / \omega^{\prime}\right)^{k}= \pm 1$.

References

[CS93] G. S. Call and J. Silverman, Canonical heights on varieties with morphism, Compositio Math. 89 (1993), 163-205.
[Fak03] N. Fakhruddin Questions on self-maps on algebraic varieties J.Ramanujan Math.Soc.,18(2) (2003), 129-122.
[GT08] D. Ghioca and T. J. Tucker, Proof of a dynamical Bogomolov conjecture for lines under polynomial actions, submitted for publication, 2008, available online at arXiv:0808.3263v2.
[GT09] \qquad , Counterexampls to Zhang's Dynamical Manin-Mumford conjecture, in preparation, 2009.
[Har77] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics 52 (1977).
[HS00] M. Hindry and J. Silverman, Diophantine Geometry: an introduction, Graduate Texts in Mathematics 201, 2000.
[HS00] M. Hindry and J. Silverman, Diophantine Geometry: an introduction, Graduate Texts in Mathematics 201, 2000.
[Ray83] M. Raynaud, Sous-varietes dune variete abelienne et points de torsion, Prog. Math. 35 (1983), 327-352.
[Sil86] J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986.
[Sil94]_, Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 151, Springer-Verlag, New York, 1994.
[Sil07] _ , The arithmetic of dynamical systems, Graduate Texts in Mathematics, vol. 241, Springer, New York, 2007.

Jorge Pineiro: Department of Mathematics and Computer Science. Bronx Community College of CUNY. 2155 University Ave. Bronx, NY 10453

E-mail address: jorge.pineiro@bcc.cuny.edu

[^0]: 2010 Mathematics Subject Classification. Primary: ; Secondary:

