Hyperbolic polarizations, pairs of inverse maps and the Dirichlet property on arithmetic varieties

Jorge Pineiro
Bronx Community College, CUNY

School and Workshop in Diophantine Geometry and Special Varieties, Trento, September 16-21, 2019

Table of Contents

(1) The polarization property of self-maps.

- Intersection number and polarizations.
(2) Families of K3 surfaces with infinite group of automorphisms.
- The family $S_{a, b}$.
- The family S_{c}.
(3) Hyperbolic polarizations.
- Properties of hyperbolic polarizations.
- Dynamics conditions the geometry of X.
- Examples of hyperbolic polarizations.
(4) Adelic metrized divisors and the Dirichlet property.
- Canonical metric and compactified divisors.
- Compactified divisors and the Dirichlet property.
- The classical Dirichlet property on Spec(K).
- Polarizations and the Dirichlet property.
- Hyperbolic polarizations and the Dirichlet property.
(5) Rational points on surfaces with hyperbolic polarizations.
- Canonical height functions and rational points.

The polarization property of self-maps

Definition

An algebraic dynamical system will be given by a projective, normal, geometrically integral algebraic variety X defined over a field K and a finite, surjective self-map $\varphi: X \longrightarrow X$, also defined over K.

Suppose that E is a nonzero \mathbb{R}-divisor on X and for some real number $\alpha>1$, we have the linear equivalence $\varphi^{*} E \sim \alpha E$. A situation like this will be called a polarized dynamical system (X, φ, E, α) on X.

Example

A map $\varphi: \mathbb{P}^{d} \longrightarrow \mathbb{P}^{d}$, given by homogeneous polynomials of degree $\alpha>1$ on the projective space \mathbb{P}^{d}, admits a polarization $\left(\mathbb{P}^{d}, \varphi, H, \alpha\right)$, where H is a hyperplane section.

Intersection number and the polarization property

Let X be of dimension d. We have on X a multilinear intersection product $\left(D_{1}, D_{2}, \ldots, D_{d}\right)$, that depends only on the linear equivalence class of the D_{i}. From the polarization property $\varphi^{*} E \sim \alpha E$ and the multilinearity of the intersection number, we obtain

$$
\alpha^{d}\left(E^{d}\right)=\left((\alpha E)^{d}\right)=\left(\left(\varphi^{*} E\right)^{d}\right)=\operatorname{deg}(\varphi)\left(E^{d}\right)
$$

As a consequence we have the following properties:
(1) If the polarizing divisor E is ample, then $\operatorname{deg}(\varphi)=\alpha^{d}$.
(2) If $\operatorname{deg}(\varphi) \neq \alpha^{d}$, then the self-intersection $\left(E^{d}\right)=0$.

In the particular case of automorphisms:

Fact:

If $\varphi: X \longrightarrow X$ is an automorphism on X and (X, φ, E, α) is a polarized dynamical system, then the self-intersection $\left(E^{d}\right)=0$.

The family $S_{a, b}$ or $K 3$ surfaces in $\mathbb{P}^{2} \times \mathbb{P}^{2}$

Consider the family of $K 3$ surfaces $S_{a, b} \subset \mathbb{P}^{2} \times \mathbb{P}^{2}$ studied by Silverman. The family $S_{a, b}$ is determined by equations:

$$
\sum_{i, j=1}^{3} a_{i, j} x_{i} y_{j}=\sum_{i, j, k, l=1}^{3} b_{i, j, k, l} x_{i} x_{k} y_{j} y_{l}=0
$$

The projections p_{x} and p_{y} represent double coverings of \mathbb{P}_{K}^{2} and determine rational maps σ_{x} and σ_{y} in each of the members of the family. Suppose that σ_{x}, σ_{y} are morphisms and we have denoted the pull-back divisors by $D_{n}^{x}=p_{x}^{*}\left\{x_{n}=0\right\}$ and $D_{m}^{y}=p_{y}^{*}\left\{y_{m}=0\right\}$ respectively. We can determine the eigenvalues of $\left(\sigma_{y} \circ \sigma_{x}\right)^{ \pm 1 *}$ in the subspace of generated by D_{n}^{x} and D_{m}^{y}. Indeed for $\varphi=\sigma_{y} \circ \sigma_{x}$ and $\beta=2+\sqrt{3}$, the real divisors

$$
E^{+}=E_{m n}^{+}=\beta D_{x}^{n}-D_{y}^{m}, \quad E^{-}=E_{m n}^{-}=-D_{x}^{n}+\beta D_{y}^{m}
$$

will satisfy the two identities

$$
\varphi^{*} E^{+} \sim \beta^{2} E^{+} \text {and }\left(\varphi^{-1}\right)^{*} E^{-} \sim \beta^{2} E^{-}
$$

The family S_{c} of $K 3$ surfaces in $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$

Consider a smooth projective variety $S=S_{c}$ defined by a $(2,2,2)$ form in $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$. For $(x, y, z) \in \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$, the surface S can be viewed as zero locus of the polynomial

$$
F(x, y, z)=\sum_{i_{1}+j_{l}=2, l=0,1,2} c_{i_{1}, i_{2}, i_{3}, j_{1}, j_{2}, j_{3}} x_{0}^{i_{1}} x_{1}^{j_{1}} y_{0}^{i_{2}} y_{1}^{j_{2}} z_{0}^{i_{3}} z_{1}^{j_{3}}
$$

where the coefficients $c_{i_{1}, i_{2}, i_{3}, j_{1}, j_{2}, j_{3}}$ belong to a field K. We define rational maps $\sigma_{1}=\sigma_{2,3}: S \longrightarrow S, \sigma_{2}=\sigma_{1,3}: S \longrightarrow S$ and $\sigma_{3}=\sigma_{1,2}: S \longrightarrow S$. For generic members of the family, the maps σ_{1}, σ_{2} and σ_{3} are well defined automorphisms of the surface S. We call this case, the generic case, and work from now on with generic surfaces of the family S. Let $\left\{t_{0}\right\}$ be a point in \mathbb{P}_{K}^{1} and $p^{i}: S \longrightarrow \mathbb{P}^{1}$ the projection onto the i-th component. Let D_{i}, for $i=1,2,3$, be the ample divisor $D_{i}=\left(p^{i}\right)^{*}\left[t_{0}\right]$ in S

Eigenvalues and eigenvectors for $\sigma_{i, j, k}^{*}: S_{c} \longrightarrow S_{c}$

For generic surfaces in S_{c}, the Picard number is three and we will work with the basis $\mathcal{D}=\left\{D_{1}, D_{2}, D_{3}\right\}$ of $\operatorname{Car}(S)_{\mathbb{R}}$. We put $\beta=\frac{3+\sqrt{5}}{2}$, $a=\frac{-3+\sqrt{5}}{2}$ and $b=\frac{-1+\sqrt{5}}{2}$, and name the divisors

$$
\begin{array}{lll}
E_{1}=[1, a, b]_{\mathcal{D}} & E_{5}=[b, 1, a]_{\mathcal{D}} & E_{3}=[a, b, 1]_{\mathcal{D}} \\
E_{4}=[1, b, a]_{\mathcal{D}} & E_{2}=[a, 1, b]_{\mathcal{D}} & E_{6}=[b, a, 1]_{\mathcal{D}}
\end{array}
$$

The eigenvectors associated to the different eigenvalues λ for the maps $\sigma_{i, j, k}^{*}=\left(\sigma_{i} \circ \sigma_{j} \circ \sigma_{k}\right)^{*}=\sigma_{k}^{*} \circ \sigma_{j}^{*} \circ \sigma_{i}^{*}$ can be computed as:

Morphism	$\lambda=\beta^{3}$	$\lambda=\beta^{-3}$	$\lambda=-1$
$\sigma_{3,2,1}^{*}=\sigma_{1}^{*} \circ \sigma_{2}^{*} \circ \sigma_{3}^{*}$	$E_{3}=[a, b, 1]$	$E_{4}=[1, b, a]$	$[1,-3,1]$
$\sigma_{1,3,2}^{*}=\sigma_{2}^{*} \circ \sigma_{3}^{*} \circ \sigma_{1}^{*}$	$E_{1}=[1, a, b]$	$E_{2}=[a, 1, b]$	$[1,1,-3]$
$\sigma_{2,1,3}^{*}=\sigma_{3}^{*} \circ \sigma_{1}^{*} \circ \sigma_{2}^{*}$	$E_{5}=[b, 1, a]$	$E_{6}=[b, a, 1]$	$[-3,1,1]$
$\sigma_{3,1,2}^{*}=\sigma_{2}^{*} \circ \sigma_{1}^{*} \circ \sigma_{3}^{*}$	$E_{6}=[b, a, 1]$	$E_{5}=[b, 1, a]$	$[-3,1,1]$
$\sigma_{2,3,1}^{*}=\sigma_{1}^{*} \circ \sigma_{3}^{*} \circ \sigma_{2}^{*}$	$E_{2}=[a, 1, b]$	$E_{1}=[1, a, b]$	$[1,1,-3]$
$\sigma_{1,2,3}^{*}=\sigma_{3}^{*} \circ \sigma_{2}^{*} \circ \sigma_{1}^{*}$	$E_{4}=[1, b, a]$	$E_{3}=[a, b, 1]$	$[1,-3,1]$

Pairs of inverse maps in the family S_{c}

We have three pairs of polarized dynamical systems on S given by a map $\varphi: S \longrightarrow S$ and its inverse $\varphi^{-1}: S \longrightarrow S$, namely the pairs:

$$
\begin{aligned}
\tau_{1} & =\left[\left(S, \sigma_{3,2,1}, E_{3}, \beta^{3}\right),\left(S, \sigma_{1,2,3}, E_{4}, \beta^{3}\right)\right], \\
\tau_{2} & =\left[\left(S, \sigma_{1,3,2}, E_{1}, \beta^{3}\right),\left(S, \sigma_{2,3,1}, E_{2}, \beta^{3}\right)\right], \\
\tau_{3} & =\left[\left(S, \sigma_{2,1,3}, E_{5}, \beta^{3}\right),\left(S, \sigma_{3,1,2}, E_{6}, \beta^{3}\right)\right] .
\end{aligned}
$$

We can check that the divisors $E_{3}+E_{4}, E_{1}+E_{2}$ and $E_{5}+E_{6}$ are ample real divisors divisors in $\operatorname{Car}(S)_{\mathbb{R}}$. Authors like Wang, Baragar and Billard worked out the action of the maps σ_{i}^{*} on $\operatorname{Car}(S)_{\mathbb{R}}$, as well as the eigenvalues and eigenvectors. Inspired by the work of Silverman in the family $S_{a, b}$, the pair of maps τ_{2} was work out in full details by Billard.

Hyperbolic polarizations and pairs of inverse maps

Definition

A polarized dynamics (X, φ, E, α) defined over K on X will be called hyperbolic polarized if there exist a real divisor $0 \neq E^{\prime} \in \operatorname{Car}(X)_{\mathbb{R}}$ such that $\varphi^{*} E^{\prime} \sim \frac{1}{\alpha} E^{\prime}$. Furthermore, if $E+E^{\prime}$ is ample, we will say that the algebraic dynamical system (X, φ, E, α) is ample hyperbolic polarized.

Remark

Let X be a normal projective surface defined over a field K and (X, φ, E, α) a polarized dynamical system associated to an automorphism $\varphi \in \operatorname{Aut}(X)$ over K. The system (X, φ, E, α) is hyperbolic polarized with divisor E^{\prime} if and only if we can find a pair of polarized dynamical systems (X, φ, E, α) and $\left(X, \varphi^{-1}, E^{\prime}, \alpha\right)$ associated to the map $\varphi: X \longrightarrow X$ and its inverse $\varphi^{-1}: X \longrightarrow X$. Again in this situation we will say that (X, φ, E, α) is ample hyperbolic polarized if $E+E^{\prime}$ is ample.

Properties of hyperbolic polarizations

Proposition

Let (X, φ, E, α) be polarized system on the smooth surface X over the field K. Suppose that (X, φ, E, α) is ample hyperbolic polarized. Then, for every nonzero effective divisor $0 \neq D \in \operatorname{Eff}(X)_{\mathbb{R}}$, we have $(E, D)>0$.

Proposition

Let X be a smooth projective surface and $\varphi \in \operatorname{Aut}(X)$ such that we have a hyperbolic polarization given by two polarized dynamical systems (X, φ, E, α) and $\left(X, \varphi^{-1}, E^{\prime}, \alpha\right)$, with $E+E^{\prime}$ is ample. Then, for every real nonzero effective divisor D, the intersection numbers (E, D) and $\left(E^{\prime}, D\right)$ are both positive. In particular, the divisors E, E^{\prime} can not be \mathbb{R}-linearly equivalent to effective divisors.

Polarized dynamics conditions the geometry of X

Theorem

(Fakhrudin for projective, Zhang for compact Käler manifolds) Let (X, φ, E, α) be a polarized dynamical system on X with E ample. Then the Kodaira dimension $\kappa(X)$ of X is $\kappa(X) \leq 0$.

As a corollary of our intersection results, we get:

Corollary

Let (X, φ, E, α) be ample hyperbolic polarized system on the smooth surface X over the field K associate to an étale $\operatorname{map} \varphi: X \longrightarrow X$ such that $\operatorname{deg}(\varphi) \neq \alpha$. Let us denote by K_{X} the canonical divisor of X. Then, for any real number m, the divisor $m K_{X}$ is either zero or not effective on X. In particular, the Kodaira dimension $\kappa(X) \leq 0$.

Examples of hyperbolic polarizations

Example

For the family $S_{a, b}$ of Wehler K3 surfaces, we have ample hyperbolic polarizations associated to the pair of polarized dynamical systems $\left(S_{a, b}, \varphi^{+}, E^{+}, \beta^{2}\right)$ and $\left(S_{a, b}, \varphi^{-}, E^{-}, \beta^{2}\right)$, for $\beta=2+\sqrt{3}$. We can check that $E^{+}+E^{-}=(1+\sqrt{3})\left(D_{1}+D_{2}\right)$ is ample.

Example

Let S_{c} be the family of K 3 surfaces in $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$. For $\beta=\frac{3+\sqrt{5}}{2}$, the pairs τ_{1}, τ_{2} and τ_{3} of inverse maps, provide ample hyperbolic polarizations in S_{c} :

$$
\begin{aligned}
\tau_{1} & =\left[\left(S, \sigma_{3,2,1}, E_{3}, \beta^{3}\right),\left(S, \sigma_{1,2,3}, E_{4}, \beta^{3}\right)\right], \\
\tau_{2} & =\left[\left(S, \sigma_{1,3,2}, E_{1}, \beta^{3}\right),\left(S, \sigma_{2,3,1}, E_{2}, \beta^{3}\right)\right], \\
\tau_{3} & =\left[\left(S, \sigma_{2,1,3}, E_{5}, \beta^{3}\right),\left(S, \sigma_{3,1,2}, E_{6}, \beta^{3}\right)\right] .
\end{aligned}
$$

Adelic metrized divisors and the Dirichlet property

We are going to work with a polarized dynamical system (X, φ, E, α) defined over a number field K. We denote by \mathcal{O}_{K} its ring of integers.

Consider analytic spaces $\pi_{v}: X_{v}^{a n} \longrightarrow X$ associated to X at each place v of K and metrics on the analytifications $\mathcal{L}_{v}=\pi_{v}^{*} \mathcal{O}(E)$ for each place v of K. For a real divisor E polarizing a dynamical system $\varphi: X \longrightarrow X$, there exist a canonical way to put a metric $\|\cdot\|_{\varphi, v}$, associated to the map φ, on the analytification $\mathcal{L}_{v}=\pi_{v}^{*} \mathcal{L}$ of the line bundle $\mathcal{L}=\mathcal{O}(E)$.

Definition

A metric on a line bundle \mathcal{L} is a collection of metrics $\|\cdot\|=\left(\|\cdot\|_{v}\right)_{v}$, where $\|\cdot\|_{v}$ is a metric on $\mathcal{L}_{v}=\pi_{v}^{*} \mathcal{L}$ for every place v of K. A metric will be called quasi-algebraic or adelic if it is induced (algebraic) by the same model for almost finite places v of K.

Algebraic metrics: metrics induced by a model

Let v be a finite place. For proper varieties we have a reduction map red $_{v}: X_{v}^{a n} \longrightarrow X_{v}=X \otimes_{K} K_{v}$, from the analytic space $X_{v}^{\text {an }}$ onto the special fibre.

Definition

Suppose that K^{0} is a discrete valuation ring and put $S=\operatorname{Spec}\left(K^{0}\right)$. Let $(\tilde{X}, \tilde{\mathcal{L}}, e)$ be a proper flat model of $\left(X, \mathcal{L}^{e}\right)$ over $S=\operatorname{Spec}\left(K^{0}\right)$. Let s be a local section of $\mathcal{L}^{a n}$ defined at a point $P \in X^{a n}$. Let $\tilde{U} \subset \tilde{X}$ be a trivializing open neighborhood of the reduction $\operatorname{red}(P)$ and σ a generator of $\tilde{\mathcal{L}} \mid \tilde{U}$. Let $U=\tilde{U} \cap X$ and $\lambda \in \mathcal{O}_{U^{a n}}$ such that $s^{\otimes e}=\lambda \sigma$ on $U^{a n}$. Then, the metric $\|\cdot\|_{\tilde{X}, \tilde{\mathcal{L}}, e}$ induced by the proper model $(\tilde{X}, \tilde{\mathcal{L}}, e)$ on $\mathcal{L}^{a n}$ is given by

$$
\|s(P)\|_{\tilde{x}, \tilde{\mathcal{L}}, e}=|\lambda(P)|^{1 / e}
$$

The metrics obtained in this way are independent of the choice of \tilde{U} and σ and are called algebraic metrics on \mathcal{L}.

Canonical metric and compactified divisors

The metrized divisor $\widehat{(f)}$ associated to $f \in \operatorname{Rat}(X)_{\mathbb{R}}^{*}$ has the absolute value
 associated an adelic metric $\|\cdot\|_{\varphi}=\left(\|\cdot\|_{\varphi, v}\right)_{v}$ to a polarized dynamical system.

Definition

Let (X, φ, E, α) be a polarized dynamical system on X defined over K and let $\|$.$\| be a metric on E$. We have $\varphi^{*} E=\alpha E+(f)$ for some $f \in \operatorname{Rat}(X)_{\mathbb{R}}^{*}$ and, for every place v, a continuous function $\lambda_{v,(E,\|.\|)}: X_{v}^{a n} \longrightarrow K_{v}$ such that

$$
\varphi^{*}\|\cdot\|_{v}=|f|_{v}\|\cdot\|_{v}^{\alpha} \lambda_{v,(E,\|\cdot\|)} .
$$

The function $\lambda_{v,(E,\|\cdot\| \varphi)} \equiv 1$, for almost all places. The canonical metric associated to the map φ is the unique metric $\|.\|_{\varphi}$ on E satisfying that $\lambda_{v,\left(E,\|\cdot\|_{\varphi}\right)} \equiv 1$ for all places v. In this sense we have

$$
\varphi^{*}\left(E,\|\cdot\|_{\varphi}\right)=\alpha\left(E,\|\cdot\|_{\varphi}\right)+\widehat{(f)}
$$

Compactified divisors and the Dirichlet property

Definition

The metric $\left(\|\cdot\|_{\varphi, v}\right)$ is called the canonical metric on E associated to the map φ. The adelic metrized divisor $\bar{E}=\left(E,\|\cdot\|_{\varphi, v}\right)$ is called the canonical compactification of E.

In the work of Moriwaki and Chen, canonical compactifications are studied in relation to a higher dimensional analogue of Dirichlet unit's theorem. Let us extend our notion of effective to metrized divisors \bar{D}.

Definition

The arithmetic \mathbb{R}-divisor \bar{D} is effective ($\bar{D} \succeq 0$) if D is effective and the canonical section s_{D} satisfies $\left\|s_{D}\right\|_{v_{,} \text {sup }} \leq 1$ for all places $v \in \mathcal{M}_{K}$. We say that the adelic metrized \mathbb{R}-divisor \bar{D} satisfies the Dirichlet property if there exist an \mathbb{R}-rational function $f \in \operatorname{Rat}(X)_{\mathbb{R}}^{*}$ such that $\bar{D}+\widehat{(f)} \succeq 0$.

The classical Dirichlet property on $\operatorname{Spec}(K)$

Proposition

(Dirichlet's unit theorem in dimension zero) Let $X=\operatorname{Spec}(K)$ and let $\bar{D}=\left(0,\left(\xi_{\sigma}\right)_{\sigma}\right)$ be a real metrized divisor on X, the following two are equivalent:
(1) The degree $\widehat{\operatorname{deg}}(\bar{D})=\sum_{\sigma} \varepsilon_{\sigma} \xi_{\sigma} \geq 0$.
(2) \bar{D} has the Dirichlet property.

Corollary

(Classical Dirichlet's unit theorem) Let Φ a complete set of places at infinity of K without conjugate pairs. Let $\xi=\left(\xi_{\sigma}\right) \in \mathbb{R}^{|\Phi|}$ such that $\sum_{\sigma \in \Phi} \varepsilon_{\sigma} \xi_{\sigma}=0$, where $\varepsilon_{\sigma}=1$ for every real embedding $\sigma: K \longrightarrow \mathbb{C}$ and $\varepsilon_{\sigma}=2$ otherwise. Then there exist units $u_{1}, u_{2}, \ldots, u_{s} \in \mathcal{O}_{K}^{*}$ and $a_{1}, a_{2}, \ldots, a_{s}$ such that $\xi_{\sigma}=a_{1} \log \left|u_{1}\right|_{\sigma}+\cdots+a_{s} \log \left|u_{s}\right|_{\sigma}$ for all $\sigma \in \Phi$.

Another two cases when we have the Dirichlet property

Definition

Let X be a projective normal variety over K and \bar{D} an adelic metrized \mathbb{R}-metrized divisor on X. The divisor \bar{D} is pseudo-effective if $\bar{D}+\bar{A}$ is big for every big divisor \bar{A}.

If \bar{D} has the Dirichlet property, then it is pseudo-effective. The converse, on the other hand, does not always holds.

Example

(Moriwaki, 2011) If the arithmetic divisor \bar{D} is pseudo-effective and $D_{\mathbb{Q}}$ is numerically trivial, the Dirichlet property holds for \bar{D}.

Example

(Burgos Gil, Moriwaki, Phillippon, Sombra, 2012) If X is a toric variety and \bar{D} is an toric metrized \mathbb{R}-divisor, the Dirichlet property holds for \bar{D}.

Polarizations and the Dirichlet property

Canonically compactified divisors gives examples and non-examples of metrized divisors with the Dirichlet property.

Example

(Chen/Moriwaki negative answer in Abelian varieties) Let A be an abelian variety and E a symmetric ample divisor such that $[2]^{*} E=4 E+\operatorname{div}(f)$. For any place σ at infinity, the set $\operatorname{Prep}([2])_{\sigma}$ of points with finite forward orbit, is dense in $A(\mathbb{C})_{\sigma}$. Therefore \bar{E} does not have the Drichlet property.

Example

(Chen/Moriwaki positive answer for polynomial maps) Whenever a polarized system (X, φ, E, α) gives equality $\varphi^{*} E=\alpha D$ with E effective, the Dirichlet property holds for \bar{E}. For example take a surjective polynomial $\operatorname{map} \varphi: \mathbb{P}^{n} \longrightarrow \mathbb{P}^{n}$ of degree $\operatorname{deg}(\varphi)=\alpha>1$ and the hyperplane $H=\left\{P=\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{P}^{n} \mid x_{0}=0\right\}$. We have $\varphi^{*} H=\alpha H$ and the Dirichlet property holds for \bar{H}.

Hyperbolic polarizations and the Dirichlet property

Ample hyperbolic polarizations will give examples of compactified divisors without the Dirichlet property:

Proposition

Let (X, φ, E, α) be an ample hyperbolic polarized system in the smooth surface X, with $\operatorname{deg}(\varphi) \neq \alpha^{2}$. Then, the canonical compactification \bar{E} do not satisfy the Dirichlet property. Also, for a pair of polarized systems $(X, \varphi, E, \alpha),\left(X, \varphi^{-1}, E^{\prime}, \alpha\right)$ with $E+E^{\prime}$ ample, the canonically compactified divisors \bar{E} and \bar{E}^{\prime} do not satisfy the Dirichlet property.

Corollary

In the family $S_{a, b}$, the compactified divisors \bar{E}^{+}, \bar{E}^{-}do not have the Dirichlet property. In the family S_{c}, the compactified divisors \bar{E}_{i} do not have the Dirichlet property.

Rational points on surfaces with hyperbolic polarizations

Let X be a smooth projective surface over a field K and (X, φ, E, α) a polarized dynamical system on X. Let us assume furthermore that (X, φ, E, α) is ample hyperbolic polarized.

Definition

Let us define the orbit of a point $P \in X(K)$ under the action of $\varphi: X \longrightarrow X$ as

$$
\mathcal{A}(P)=\left\{\varphi^{n}(P) \mid n \in \mathbb{N}\right\} .
$$

Proposition

If the orbit $\mathcal{A}(P)$ is infinite, then $\mathcal{A}(P)$ is Zariski dense in $X(K)$.
The above result was proved by Silverman for the family $S_{a, b}$ and by Billard for the family S_{c} under the action of the system τ_{2}.

Polarized dynamical systems and canonical heights

Consider a polarized dynamics (X, φ, E, α) over a number field K. Following Silverman (1993), we can define a canonical height function $\hat{h}_{\varphi}: X(\bar{K}) \longrightarrow \mathbb{R}$ satisfying the following properties:
(1) \hat{h}_{φ} is a Weil height function associated to E.
(2) $\hat{h}_{\varphi}(\varphi(P))=\alpha \hat{h}_{\varphi}(P)$.

Remark

If the orbit $\mathcal{A}(P)$ of a point P is finite, the canonical height $\hat{h}_{\varphi}(P)=0$. Under some conditions we can prove the converse of this result.

Assumption

Suppose that a Weil height $h^{\prime}=h_{E^{\prime}}$ for the divisor E^{\prime} is bounded on the orbit $\mathcal{A}(P)$. This is, there exist $M=M(P)>0$ such that for all $n \in \mathbb{N}$, we have

$$
\left|h^{\prime}\left(\varphi^{n}(P)\right)\right|<M .
$$

Canonical height functions and rational points

Proposition

Under our assumption, the ample hyperbolic polarized system (X, φ, E, α) over the number field K satisfies:

$$
\text { The orbit } \mathcal{A}(P) \text { of a point } P \text { is finite } \Longleftrightarrow \hat{h}_{\varphi}(P)=0
$$

Proposition

Under the assumption, the canonical height \hat{h}_{φ} associated to our ample hyperbolic polarized system (X, φ, E, α) satisfies $\hat{h}_{\varphi} \geq 0$.

One way to satisfy our Assumption is to have an ample hyperbolic polarization (X, φ, E, α) associated to an automorphism $\varphi: X \longrightarrow X$ and choose the canonical height $\hat{h}^{\prime}=\hat{h}_{\varphi^{-1}}$ associated $\left(X, \varphi^{-1}, E^{\prime}, \alpha\right)$.

Rational points and heights for pairs of inverse maps

The following result was obtained by Silverman on $S_{a, b}$ and by Billard on the family S_{c} :

Corollary

Let K be a number field and suppose and X a smooth surface defined over K. Suppose that (X, φ, E, α) is an ample hyperbolic polarization over K associated to an automorphism $\varphi: X \longrightarrow X$ on X. Let us denote by $\hat{h}=\hat{h}_{\varphi}$ and $\hat{h}^{\prime}=\hat{h}_{\varphi^{-1}}$, the canonical heights associated to the dynamical systems (X, φ, E, α), and $\left(X, \varphi^{-1}, E^{\prime}, \alpha\right)$ respectively. For a rational point $P \in X(K)$, the following are equivalent:
(1) $\mathcal{A}(P)$ is finite.
(2) $\left(\hat{h}+\hat{h}^{\prime}\right)(P)=0$.
(3) $\hat{h}(P)=0$.
(4) $\hat{h}^{\prime}(P)=0$.

Arithmetic results

Suppose that (X, φ, E, α) is an ample hyperbolic polarization over K associated to an automorphism $\varphi: X \longrightarrow X$ on X.

Corollary

The set $\{P \in X(\bar{K}) \mid \mathcal{A}(P)$ is finite $\}$ is a set of bounded height. In particular, the set $\{P \in X(K) \mid \mathcal{A}(P)$ is finite $\}$ is a finite set.

Definition

For an orbit $C=\mathcal{A}(P)$, let us define the height of the orbit C as the number $h(\mathcal{C})=\sqrt{\hat{h}(P) \hat{h}^{\prime}(P)}$. The number $h(\mathcal{C})$ will measure the arithmetic complexity of the orbit \mathcal{C}.

Proposition

(Silverman 93, Billard 97) If $h(\mathcal{C})>0$ and B is sufficiently big, we have

$$
\#\left\{Q \in \mathcal{C} \mid \hat{h}(Q)+\hat{h}^{\prime}(Q)<B\right\}=\kappa(\mathcal{C}) \log _{\alpha}(B / h(\mathcal{C}))+O(1)
$$

Open questions

So far, our examples of hyperbolic polarizations, involve automorphisms $\varphi: X \longrightarrow X$ and pairs of polarized systems $(X, \varphi, E, \alpha),\left(X, \varphi^{-1}, E^{\prime}, \alpha\right)$.

Question

Can we find a hyperbolic polarization (X, φ, E, α), where $\varphi: X \longrightarrow X$ is not an automorphism? In case of a positive answer, can we find one such polarization satisfying our assumption on the height $h_{E^{\prime}}$?

Question

Can we get results for the counting of rational points in orbits, when $\varphi: X \longrightarrow X$ is not an automorphism and we have an ample hyperbolic polarization (X, φ, E, α) in X ?

Question

Can we find a hyperbolic polarization (X, φ, E, α) on a geometrically ruled surface $\pi: X \longrightarrow C$? Is the map $\varphi \in \operatorname{Aut}(X)$?

To the organizers for the great conference and school, thanks!

