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The polarization property of self-maps

Definition

An algebraic dynamical system will be given by a projective, normal,
geometrically integral algebraic variety X defined over a field K and a
finite, surjective self-map ϕ : X −→ X , also defined over K .

Suppose that E is a nonzero R-divisor on X and for some real number
α > 1, we have the linear equivalence ϕ∗E ∼ αE . A situation like
this will be called a polarized dynamical system (X , ϕ,E , α) on X .

Example

A map ϕ : Pd −→ Pd , given by homogeneous polynomials of degree α > 1
on the projective space Pd , admits a polarization (Pd , ϕ,H, α), where H is
a hyperplane section.
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Intersection number and the polarization property

Let X be of dimension d . We have on X a multilinear intersection product
(D1,D2, . . . ,Dd), that depends only on the linear equivalence class of the
Di . From the polarization property ϕ∗E ∼ αE and the multilinearity of the
intersection number, we obtain

αd(Ed) = ((αE )d) = ((ϕ∗E )d) = deg(ϕ)(Ed).

As a consequence we have the following properties:

(1) If the polarizing divisor E is ample, then deg(ϕ) = αd .

(2) If deg(ϕ) 6= αd , then the self-intersection (Ed) = 0.

In the particular case of automorphisms:

Fact:

If ϕ : X −→ X is an automorphism on X and (X , ϕ,E , α) is a polarized
dynamical system, then the self-intersection (Ed) = 0.
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The family Sa,b or K3 surfaces in P2 × P2

Consider the family of K3 surfaces Sa,b ⊂ P2 × P2 studied by Silverman.
The family Sa,b is determined by equations:

3∑
i ,j=1

ai ,jxiyj =
3∑

i ,j ,k,l=1

bi ,j ,k,lxixkyjyl = 0.

The projections px and py represent double coverings of P2
K and determine

rational maps σx and σy in each of the members of the family. Suppose
that σx , σy are morphisms and we have denoted the pull-back divisors by
Dx
n = p∗x{xn = 0} and Dy

m = p∗y{ym = 0} respectively. We can determine
the eigenvalues of (σy ◦ σx)±1∗ in the subspace of generated by Dx

n and
Dy
m. Indeed for ϕ = σy ◦ σx and β = 2 +

√
3, the real divisors

E+ = E+
mn = βDn

x − Dm
y , E− = E−mn = −Dn

x + βDm
y

will satisfy the two identities

ϕ∗E+ ∼ β2E+ and (ϕ−1)∗E− ∼ β2E−.
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The family Sc of K3 surfaces in P1 × P1 × P1

Consider a smooth projective variety S = Sc defined by a (2, 2, 2) form in
P1 × P1 × P1. For (x , y , z) ∈ P1 × P1 × P1, the surface S can be viewed as
zero locus of the polynomial

F (x , y , z) =
∑

il+jl=2, l=0,1,2

ci1,i2,i3,j1,j2,j3x
i1
0 x

j1
1 y i20 y j21 z i30 z

j3
1 ,

where the coefficients ci1,i2,i3,j1,j2,j3 belong to a field K . We define rational
maps σ1 = σ2,3 : S −→ S , σ2 = σ1,3 : S −→ S and σ3 = σ1,2 : S −→ S .
For generic members of the family, the maps σ1, σ2 and σ3 are well defined
automorphisms of the surface S . We call this case, the generic case, and
work from now on with generic surfaces of the family S . Let {t0} be a
point in P1

K and pi : S −→ P1 the projection onto the i-th component. Let
Di , for i = 1, 2, 3, be the ample divisor Di = (pi )∗[t0] in S
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Eigenvalues and eigenvectors for σ∗i ,j ,k : Sc −→ Sc

For generic surfaces in Sc , the Picard number is three and we will work

with the basis D = {D1,D2,D3} of Car(S)R. We put β = 3+
√

5
2 ,

a = −3+
√

5
2 and b = −1+

√
5

2 , and name the divisors

E1 = [1, a, b]D E5 = [b, 1, a]D E3 = [a, b, 1]D

E4 = [1, b, a]D E2 = [a, 1, b]D E6 = [b, a, 1]D

The eigenvectors associated to the different eigenvalues λ for the maps
σ∗i ,j ,k = (σi ◦ σj ◦ σk)∗ = σ∗k ◦ σ∗j ◦ σ∗i can be computed as:

Morphism λ = β3 λ = β−3 λ = −1

σ∗3,2,1 = σ∗1 ◦ σ∗2 ◦ σ∗3 E3 = [a, b, 1] E4 = [1, b, a] [1,−3, 1]

σ∗1,3,2 = σ∗2 ◦ σ∗3 ◦ σ∗1 E1 = [1, a, b] E2 = [a, 1, b] [1, 1,−3]

σ∗2,1.3 = σ∗3 ◦ σ∗1 ◦ σ∗2 E5 = [b, 1, a] E6 = [b, a, 1] [−3, 1, 1]

σ∗3,1,2 = σ∗2 ◦ σ∗1 ◦ σ∗3 E6 = [b, a, 1] E5 = [b, 1, a] [−3, 1, 1]

σ∗2,3,1 = σ∗1 ◦ σ∗3 ◦ σ∗2 E2 = [a, 1, b] E1 = [1, a, b] [1, 1,−3]

σ∗1,2,3 = σ∗3 ◦ σ∗2 ◦ σ∗1 E4 = [1, b, a] E3 = [a, b, 1] [1,−3, 1]
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Pairs of inverse maps in the family Sc

We have three pairs of polarized dynamical systems on S given by a map
ϕ : S −→ S and its inverse ϕ−1 : S −→ S , namely the pairs:

τ1 = [(S , σ3,2,1,E3, β
3) , (S , σ1,2,3,E4, β

3)],

τ2 = [(S , σ1,3,2,E1, β
3) , (S , σ2,3,1,E2, β

3)],

τ3 = [(S , σ2,1,3,E5, β
3) , (S , σ3,1,2,E6, β

3)].

We can check that the divisors E3 + E4, E1 + E2 and E5 + E6 are ample
real divisors divisors in Car(S)R. Authors like Wang, Baragar and Billard
worked out the action of the maps σ∗i on Car(S)R, as well as the
eigenvalues and eigenvectors. Inspired by the work of Silverman in the
family Sa,b, the pair of maps τ2 was work out in full details by Billard.
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Hyperbolic polarizations and pairs of inverse maps

Definition

A polarized dynamics (X , ϕ,E , α) defined over K on X will be called
hyperbolic polarized if there exist a real divisor 0 6= E ′ ∈ Car(X )R such
that ϕ∗E ′ ∼ 1

αE
′. Furthermore, if E + E ′ is ample, we will say that the

algebraic dynamical system (X , ϕ,E , α) is ample hyperbolic polarized.

Remark

Let X be a normal projective surface defined over a field K and
(X , ϕ,E , α) a polarized dynamical system associated to an automorphism
ϕ ∈ Aut(X ) over K . The system (X , ϕ,E , α) is hyperbolic polarized with
divisor E ′ if and only if we can find a pair of polarized dynamical systems
(X , ϕ,E , α) and (X , ϕ−1,E ′, α) associated to the map ϕ : X −→ X and
its inverse ϕ−1 : X −→ X . Again in this situation we will say that
(X , ϕ,E , α) is ample hyperbolic polarized if E + E ′ is ample.
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Properties of hyperbolic polarizations

Proposition

Let (X , ϕ,E , α) be polarized system on the smooth surface X over the
field K . Suppose that (X , ϕ,E , α) is ample hyperbolic polarized. Then, for
every nonzero effective divisor 0 6= D ∈ Eff(X )R, we have (E ,D) > 0.

Proposition

Let X be a smooth projective surface and ϕ ∈ Aut(X ) such that we have
a hyperbolic polarization given by two polarized dynamical systems
(X , ϕ,E , α) and (X , ϕ−1,E ′, α), with E + E ′ is ample. Then, for every
real nonzero effective divisor D, the intersection numbers (E ,D) and
(E ′,D) are both positive. In particular, the divisors E ,E ′ can not be
R-linearly equivalent to effective divisors.
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Polarized dynamics conditions the geometry of X

Theorem

(Fakhrudin for projective, Zhang for compact Käler manifolds) Let
(X , ϕ,E , α) be a polarized dynamical system on X with E ample. Then
the Kodaira dimension κ(X ) of X is κ(X ) ≤ 0.

As a corollary of our intersection results, we get:

Corollary

Let (X , ϕ,E , α) be ample hyperbolic polarized system on the smooth
surface X over the field K associate to an étale map ϕ : X −→ X such
that deg(ϕ) 6= α. Let us denote by KX the canonical divisor of X . Then,
for any real number m, the divisor mKX is either zero or not effective on
X . In particular, the Kodaira dimension κ(X ) ≤ 0.
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Examples of hyperbolic polarizations

Example

For the family Sa,b of Wehler K3 surfaces, we have ample hyperbolic
polarizations associated to the pair of polarized dynamical systems
(Sa,b, ϕ

+,E+, β2) and (Sa,b, ϕ
−,E−, β2), for β = 2 +

√
3. We can check

that E+ + E− = (1 +
√

3)(D1 + D2) is ample.

Example

Let Sc be the family of K3 surfaces in P1 × P1 × P1. For β = 3+
√

5
2 , the

pairs τ1, τ2 and τ3 of inverse maps, provide ample hyperbolic polarizations
in Sc :

τ1 = [(S , σ3,2,1,E3, β
3) , (S , σ1,2,3,E4, β

3)],

τ2 = [(S , σ1,3,2,E1, β
3) , (S , σ2,3,1,E2, β

3)],

τ3 = [(S , σ2,1,3,E5, β
3) , (S , σ3,1,2,E6, β

3)].

Jorge Pineiro (BCC) Dynamics and the Dirichlet property Diophangine Geometry CIRM 12 / 27



Adelic metrized divisors and the Dirichlet property

We are going to work with a polarized dynamical system (X , ϕ,E , α)
defined over a number field K . We denote by OK its ring of integers.

Consider analytic spaces πv : X an
v −→ X associated to X at each place v

of K and metrics on the analytifications Lv = π∗vO(E ) for each place v of
K . For a real divisor E polarizing a dynamical system ϕ : X −→ X , there
exist a canonical way to put a metric ‖.‖ϕ,v , associated to the map ϕ, on
the analytification Lv = π∗vL of the line bundle L = O(E ).

Definition

A metric on a line bundle L is a collection of metrics ‖.‖ = (‖.‖v )v , where
‖.‖v is a metric on Lv = π∗vL for every place v of K . A metric will be
called quasi-algebraic or adelic if it is induced (algebraic) by the same
model for almost finite places v of K .
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Algebraic metrics: metrics induced by a model

Let v be a finite place. For proper varieties we have a reduction map
redv : X an

v −→ Xv = X ⊗K Kv , from the analytic space X an
v onto the

special fibre.

Definition

Suppose that K 0 is a discrete valuation ring and put S = Spec(K 0). Let
(X̃ , L̃, e) be a proper flat model of (X ,Le) over S = Spec(K 0). Let s be a
local section of Lan defined at a point P ∈ X an. Let Ũ ⊂ X̃ be a
trivializing open neighborhood of the reduction red(P) and σ a generator
of L̃|Ũ. Let U = Ũ ∩ X and λ ∈ OUan such that s⊗e = λσ on Uan. Then,
the metric ‖.‖X̃ ,L̃,e induced by the proper model (X̃ , L̃, e) on Lan is given
by

‖s(P)‖X̃ ,L̃,e = |λ(P)|1/e .

The metrics obtained in this way are independent of the choice of Ũ and σ
and are called algebraic metrics on L.
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Canonical metric and compactified divisors

The metrized divisor (̂f ) associated to f ∈ Rat(X )∗R has the absolute value
|.|v as associated metric on O((f ))anv . There is a canonical way to
associated an adelic metric ‖.‖ϕ = (‖.‖ϕ,v )v to a polarized dynamical
system.

Definition

Let (X , ϕ,E , α) be a polarized dynamical system on X defined over K and
let ‖.‖ be a metric on E . We have ϕ∗E = αE + (f ) for some f ∈ Rat(X )∗R
and, for every place v , a continuous function λv ,(E ,‖.‖) : X an

v −→ Kv such
that

ϕ∗‖.‖v = |f |v‖.‖αv λv ,(E ,‖.‖).

The function λv ,(E ,‖.‖ϕ) ≡ 1, for almost all places. The canonical metric
associated to the map ϕ is the unique metric ‖.‖ϕ on E satisfying that
λv ,(E ,‖.‖ϕ) ≡ 1 for all places v . In this sense we have

ϕ∗(E , ‖.‖ϕ) = α(E , ‖.‖ϕ) + (̂f ).
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Compactified divisors and the Dirichlet property

Definition

The metric (‖.‖ϕ,v ) is called the canonical metric on E associated to the
map ϕ. The adelic metrized divisor Ē = (E , ‖.‖ϕ,v ) is called the canonical
compactification of E .

In the work of Moriwaki and Chen, canonical compactifications are studied
in relation to a higher dimensional analogue of Dirichlet unit’s theorem.
Let us extend our notion of effective to metrized divisors D̄.

Definition

The arithmetic R-divisor D̄ is effective (D̄ � 0) if D is effective and the
canonical section sD satisfies ‖sD‖v ,sup ≤ 1 for all places v ∈MK . We say
that the adelic metrized R-divisor D̄ satisfies the Dirichlet property if there

exist an R-rational function f ∈ Rat(X )∗R such that D̄ + (̂f ) � 0.
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The classical Dirichlet property on Spec(K )

Proposition

(Dirichlet’s unit theorem in dimension zero) Let X = Spec(K ) and let
D̄ = (0, (ξσ)σ) be a real metrized divisor on X , the following two are
equivalent:

(1) The degree d̂eg(D̄) =
∑

σ εσξσ ≥ 0.

(2) D̄ has the Dirichlet property.

Corollary

(Classical Dirichlet’s unit theorem) Let Φ a complete set of places at
infinity of K without conjugate pairs. Let ξ = (ξσ) ∈ R|Φ| such that∑

σ∈Φ εσξσ = 0, where εσ = 1 for every real embedding σ : K −→ C and
εσ = 2 otherwise. Then there exist units u1, u2, . . . , us ∈ O∗K and
a1, a2, . . . , as such that ξσ = a1 log |u1|σ + · · ·+ as log |us |σ for all σ ∈ Φ.
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Another two cases when we have the Dirichlet property

Definition

Let X be a projective normal variety over K and D̄ an adelic metrized
R-metrized divisor on X . The divisor D̄ is pseudo-effective if D̄ + Ā is big
for every big divisor Ā.

If D̄ has the Dirichlet property, then it is pseudo-effective. The converse,
on the other hand, does not always holds.

Example

(Moriwaki, 2011) If the arithmetic divisor D̄ is pseudo-effective and DQ is
numerically trivial, the Dirichlet property holds for D̄.

Example

(Burgos Gil, Moriwaki, Phillippon, Sombra, 2012) If X is a toric variety
and D̄ is an toric metrized R-divisor, the Dirichlet property holds for D̄.
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Polarizations and the Dirichlet property

Canonically compactified divisors gives examples and non-examples of
metrized divisors with the Dirichlet property.

Example

(Chen/Moriwaki negative answer in Abelian varieties) Let A be an abelian
variety and E a symmetric ample divisor such that [2]∗E = 4E + div(f ).
For any place σ at infinity, the set Prep([2])σ of points with finite forward
orbit, is dense in A(C)σ. Therefore Ē does not have the Drichlet property.

Example

(Chen/Moriwaki positive answer for polynomial maps) Whenever a
polarized system (X , ϕ,E , α) gives equality ϕ∗E = αD with E effective,
the Dirichlet property holds for Ē . For example take a surjective
polynomial map ϕ : Pn −→ Pn of degree deg(ϕ) = α > 1 and the
hyperplane H = {P = (x0, . . . , xn) ∈ Pn | x0 = 0}. We have ϕ∗H = αH
and the Dirichlet property holds for H̄.
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Hyperbolic polarizations and the Dirichlet property

Ample hyperbolic polarizations will give examples of compactified divisors
without the Dirichlet property:

Proposition

Let (X , ϕ,E , α) be an ample hyperbolic polarized system in the smooth
surface X , with deg(ϕ) 6= α2. Then, the canonical compactification Ē do
not satisfy the Dirichlet property. Also, for a pair of polarized systems
(X , ϕ,E , α), (X , ϕ−1,E ′, α) with E + E ′ ample, the canonically
compactified divisors Ē and Ē ′ do not satisfy the Dirichlet property.

Corollary

In the family Sa,b, the compactified divisors Ē+, Ē− do not have the
Dirichlet property. In the family Sc , the compactified divisors Ēi do not
have the Dirichlet property.
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Rational points on surfaces with hyperbolic polarizations

Let X be a smooth projective surface over a field K and (X , ϕ,E , α) a
polarized dynamical system on X . Let us assume furthermore that
(X , ϕ,E , α) is ample hyperbolic polarized.

Definition

Let us define the orbit of a point P ∈ X (K ) under the action of
ϕ : X −→ X as

A(P) = {ϕn(P) | n ∈ N}.

Proposition

If the orbit A(P) is infinite, then A(P) is Zariski dense in X (K ).

The above result was proved by Silverman for the family Sa,b and by
Billard for the family Sc under the action of the system τ2.
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Polarized dynamical systems and canonical heights

Consider a polarized dynamics (X , ϕ,E , α) over a number field K .
Following Silverman (1993), we can define a canonical height function
ĥϕ : X (K̄ ) −→ R satisfying the following properties:

1 ĥϕ is a Weil height function associated to E .

2 ĥϕ(ϕ(P)) = αĥϕ(P).

Remark

If the orbit A(P) of a point P is finite, the canonical height ĥϕ(P) = 0.
Under some conditions we can prove the converse of this result.

Assumption

Suppose that a Weil height h′ = hE ′ for the divisor E ′ is bounded on the
orbit A(P). This is, there exist M = M(P) > 0 such that for all n ∈ N, we
have

|h′(ϕn(P))| < M.
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Canonical height functions and rational points

Proposition

Under our assumption, the ample hyperbolic polarized system (X , ϕ,E , α)
over the number field K satisfies:

The orbit A(P) of a point P is finite ⇐⇒ ĥϕ(P) = 0.

Proposition

Under the assumption, the canonical height ĥϕ associated to our ample
hyperbolic polarized system (X , ϕ,E , α) satisfies ĥϕ ≥ 0.

One way to satisfy our Assumption is to have an ample hyperbolic
polarization (X , ϕ,E , α) associated to an automorphism ϕ : X −→ X and
choose the canonical height ĥ′ = ĥϕ−1 associated (X , ϕ−1,E ′, α).
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Rational points and heights for pairs of inverse maps

The following result was obtained by Silverman on Sa,b and by Billard on
the family Sc :

Corollary

Let K be a number field and suppose and X a smooth surface defined over
K . Suppose that (X , ϕ,E , α) is an ample hyperbolic polarization over K
associated to an automorphism ϕ : X −→ X on X . Let us denote by
ĥ = ĥϕ and ĥ′ = ĥϕ−1 , the canonical heights associated to the dynamical
systems (X , ϕ,E , α), and (X , ϕ−1,E ′, α) respectively. For a rational point
P ∈ X (K ), the following are equivalent:

(1) A(P) is finite.

(2) (ĥ + ĥ′)(P) = 0.

(3) ĥ(P) = 0.

(4) ĥ′(P) = 0.
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Arithmetic results

Suppose that (X , ϕ,E , α) is an ample hyperbolic polarization over K
associated to an automorphism ϕ : X −→ X on X .

Corollary

The set {P ∈ X (K̄ ) | A(P) is finite} is a set of bounded height. In
particular, the set {P ∈ X (K ) | A(P) is finite} is a finite set.

Definition

For an orbit C = A(P), let us define the height of the orbit C as the

number h(C) =
√
ĥ(P)ĥ′(P). The number h(C) will measure the

arithmetic complexity of the orbit C.

Proposition

(Silverman 93, Billard 97) If h(C) > 0 and B is sufficiently big, we have

#{Q ∈ C | ĥ(Q) + ĥ′(Q) < B} = κ(C) logα(B/h(C)) + O(1).
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Open questions

So far, our examples of hyperbolic polarizations, involve automorphisms
ϕ : X −→ X and pairs of polarized systems (X , ϕ,E , α), (X , ϕ−1,E ′, α).

Question

Can we find a hyperbolic polarization (X , ϕ,E , α), where ϕ : X −→ X is
not an automorphism? In case of a positive answer, can we find one such
polarization satisfying our assumption on the height hE ′?

Question

Can we get results for the counting of rational points in orbits, when
ϕ : X −→ X is not an automorphism and we have an ample hyperbolic
polarization (X , ϕ,E , α) in X?

Question

Can we find a hyperbolic polarization (X , ϕ,E , α) on a geometrically ruled
surface π : X −→ C? Is the map ϕ ∈ Aut(X )?
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