Two numbers correcting the behavior of rational maps: the dynamical degree and the D-ratio.

Jorge A. Pineiro

October 14, 2014

Jorge A. Pineiro Dynamical degree and D-ratio

Table of contents

Notation and conventions

2 Morphisms on projective varieties

- Morphisms on the n-dimensional projective space
- Morphisms on arbitrary projective varieties

3 Rational maps on projective varieties

- Algebraically stable maps and dynamical degree
- Example of four-folds with involutions
- The D-ratio of a rational map

Notation

Notation

K will denote a number field.

X will denote a non-singular projective algebraic variety over K. $\varphi : X \longrightarrow X'$ will denote a morphism from X to X'. $\varphi : X \dashrightarrow X'$ will denote a rational map defined maybe only on an open set $U \subset X$. $\varphi = (\varphi_0 : \varphi_1 : \cdots : \varphi_n) : \mathbb{P}^n \longrightarrow \mathbb{P}^n$ will denote a self-map on the n-dimensional projective space \mathbb{P}^n , where $\varphi_0, \varphi_1, \ldots, \varphi_n$ are homogenous polynomials of degree d without common factors. D will denote a divisor on X and h_D a height function relative to D.

イロト イヨト イヨト イヨト

Divisors and linear equivalence

Definition

A divisor D is an element of the free abelian group generated by the subvarieties $V \subset X$ of codimension one. We can think of a divisor as a finite sum

$$\mathsf{D} = \sum_{i} \mathsf{a}_i \mathsf{V}_i,$$

where a_i are in $\mathbb Z,\,\mathbb Q$ or $\mathbb R$ and V_i are subvarieties of codimension one in X.

イロン イヨン イヨン イヨン

Divisors and linear equivalence

Definition

A divisor D is an element of the free abelian group generated by the subvarieties $V \subset X$ of codimension one. We can think of a divisor as a finite sum

$$\mathsf{D} = \sum_i \mathsf{a}_i \mathsf{V}_i,$$

where a_i are in $\mathbb Z,\,\mathbb Q$ or $\mathbb R$ and V_i are subvarieties of codimension one in X.

Definition

We say that two divisors D and D' are linearly equivalent (D \sim D') if their difference D-D'=(f) is the principal divisor associated to a rational function $f \in K(X)$. We denote by $\text{Pic}(X) = \text{Div} / \sim$ the group of divisors module linear equivalences.

Intersection Theory

We have an intersection theory for subvarieties that extend to a multilinear form on divisors in X.

・ロン ・回と ・ヨン ・ヨン

æ

Intersection Theory

We have an intersection theory for subvarieties that extend to a multilinear form on divisors in X.

Example

For a surface X and C,C' two distinct subvarieties of dimension one, we can think of (C,C') as the numbers of points of the intersection counted with multiplicities.

イロト イヨト イヨト イヨト

Intersection Theory

We have an intersection theory for subvarieties that extend to a multilinear form on divisors in X.

Example

For a surface X and C,C' two distinct subvarieties of dimension one, we can think of (C,C') as the numbers of points of the intersection counted with multiplicities.

Remark

An important type of divisors will be the ones with positive intersection with all subvarieties. D is said to be ample if for all subvarieties V,

$$(\underbrace{D, D, \ldots, D}_{\dim(V)}, V) = (D^{\dim(V)}, V) > 0.$$

Numerical equivalence

Definition

We say that two divisors D and D' are numerically equivalent divisors (D \equiv D') if (D,C)=(D',C) for every irreducible curve C. We denote by N(X) = Div / \equiv the group of divisors module numerical equivalence.

Numerical equivalence

Definition

We say that two divisors D and D' are numerically equivalent divisors (D \equiv D') if (D,C)=(D',C) for every irreducible curve C. We denote by N(X) = Div / \equiv the group of divisors module numerical equivalence.

Remark

For complex projective non-singular algebraic varieties, the group of numerically equivalent classes N(X) is the quotient of the Neron-Severi group NS(X) by its torsion subgroup, therefore $NS_{\mathbb{R}}(X) \cong N(X)_{\mathbb{R}}$. Also, any two linearly equivalent divisors are numerically equivalent.

イロト イヨト イヨト イヨト

Induced maps on divisors

Remark

For a morphism $\varphi: X \longrightarrow X'$ we have induced maps

 $\varphi^* : \mathsf{NS}_{\mathbb{Q}}(X') \longrightarrow \mathsf{NS}_{\mathbb{Q}}(X), \qquad \qquad \varphi_* : \mathsf{NS}_{\mathbb{Q}}(X) \longrightarrow \mathsf{NS}_{\mathbb{Q}}(X').$

In particular when we have a self-map $\varphi : X \longrightarrow X$, we get:

 $\varphi^* : \mathsf{NS}_{\mathbb{Q}}(X) \longrightarrow \mathsf{NS}_{\mathbb{Q}}(X), \qquad \qquad \varphi_* : \mathsf{NS}_{\mathbb{Q}}(X) \longrightarrow \mathsf{NS}_{\mathbb{Q}}(X).$

For D in Div(X) and C an algebraic curve $C \subset X$ we have a projection formula

$$(\varphi^*D, C) = (D, \varphi_*C).$$

イロン イ部ン イヨン イヨン 三日

イロト イヨト イヨト イヨト

Degree of maps on the n-dimensional projective space

Definition

Suppose that $\varphi : \mathbb{P}^n \longrightarrow \mathbb{P}^n$ is a self-map on the n-dimensional projective space \mathbb{P}^n . The degree of the map φ can be defined in any of the following equivalent ways:

イロト イヨト イヨト イヨト

Degree of maps on the n-dimensional projective space

Definition

Suppose that $\varphi : \mathbb{P}^n \longrightarrow \mathbb{P}^n$ is a self-map on the n-dimensional projective space \mathbb{P}^n . The degree of the map φ can be defined in any of the following equivalent ways:

 The degree of the polynomials defining the map φ = (φ₀ : φ₁ : · · · : φ_n).

イロト イヨト イヨト イヨト

Degree of maps on the n-dimensional projective space

Definition

Suppose that $\varphi : \mathbb{P}^n \longrightarrow \mathbb{P}^n$ is a self-map on the n-dimensional projective space \mathbb{P}^n . The degree of the map φ can be defined in any of the following equivalent ways:

- The degree of the polynomials defining the map φ = (φ₀ : φ₁ : · · · : φ_n).
- 2 The spectral radius $\rho(\varphi^*)$ of the linear map

$$\varphi^*:\mathsf{NS}_{\mathbb{R}}(\mathbb{P}^n)\longrightarrow\mathsf{NS}_{\mathbb{R}}(\mathbb{P}^n)$$

induced on the Neron-Severi group $NS_{\mathbb{R}}(\mathbb{P}^n)$.

<ロ> (日) (日) (日) (日) (日)

Degree of maps on the n-dimensional projective space

Definition

Suppose that $\varphi : \mathbb{P}^n \longrightarrow \mathbb{P}^n$ is a self-map on the n-dimensional projective space \mathbb{P}^n . The degree of the map φ can be defined in any of the following equivalent ways:

- The degree of the polynomials defining the map φ = (φ₀ : φ₁ : · · · : φ_n).
- 2 The spectral radius $\rho(\varphi^*)$ of the linear map

$$\varphi^*: \mathsf{NS}_{\mathbb{R}}(\mathbb{P}^n) \longrightarrow \mathsf{NS}_{\mathbb{R}}(\mathbb{P}^n)$$

induced on the Neron-Severi group $\mathsf{NS}_{\mathbb{R}}(\mathbb{P}^n).$

The intersection number (\u03c6*H, Hⁿ⁻¹), where H is an ample divisor.

イロン イヨン イヨン イヨン

Weil height on the projective space

Remark

When we have a map $\varphi : \mathbb{P}^n \longrightarrow \mathbb{P}^n$ on the projective space, the structure of the Neron-Severi group is quite simple $NS_{\mathbb{R}}(\mathbb{P}^n) = \mathbb{R}$ and the map $\varphi^* : NS_{\mathbb{R}}(\mathbb{P}^n) \longrightarrow NS_{\mathbb{R}}(\mathbb{P}^n)$ is just multiplication by $\deg(\varphi)$. That is the reason why we can define degree for maps on \mathbb{P}^n in several equivalent ways.

イロン イヨン イヨン イヨン

Weil height on the projective space

Remark

When we have a map $\varphi : \mathbb{P}^n \longrightarrow \mathbb{P}^n$ on the projective space, the structure of the Neron-Severi group is quite simple $NS_{\mathbb{R}}(\mathbb{P}^n) = \mathbb{R}$ and the map $\varphi^* : NS_{\mathbb{R}}(\mathbb{P}^n) \longrightarrow NS_{\mathbb{R}}(\mathbb{P}^n)$ is just multiplication by $\deg(\varphi)$. That is the reason why we can define degree for maps on \mathbb{P}^n in several equivalent ways.

Definition

The Weil logarithmic height h(P) of a point $P=(x_0 : x_1 : \cdots : x_n)$ in \mathbb{P}^n is defined by the sum over all places v of K:

$$h(\mathsf{P}) = \sum_v \log sup(|x_0|_v, |x_1|_v, \dots, |x_n|_v).$$

Morphisms on the n-dimensional projective space Morphisms on arbitrary projective varieties

Height for maps on the projective space

Remark

For $deg(\varphi) > 1$, the sequence defined by

$$\{\frac{h(\varphi^n(P))}{\deg(\varphi)^n}\}$$

is a Cauchy sequence.

Morphisms on the n-dimensional projective space Morphisms on arbitrary projective varieties

Height for maps on the projective space

Remark

For $deg(\varphi) > 1$, the sequence defined by

$$\{\frac{h(\varphi^n(P))}{\deg(\varphi)^n}\}$$

is a Cauchy sequence. The function

$$\hat{h}_{\varphi} = \lim_{n} \frac{h(\varphi^{n}(P))}{\deg(\varphi)^{n}},$$

is a height function associated to the map φ .

Morphisms on the n-dimensional projective space Morphisms on arbitrary projective varieties

Height for maps on the projective space

Remark

For $deg(\varphi) > 1$, the sequence defined by

$$\{\frac{h(\varphi^n(P))}{\deg(\varphi)^n}\}$$

is a Cauchy sequence. The function

$$\hat{h}_{\varphi} = \lim_{n} \frac{h(\varphi^{n}(P))}{\deg(\varphi)^{n}},$$

is a height function associated to the map φ . It will satisfy the functional equation:

$$\hat{h}_{\varphi}(\varphi(P)) = \deg(\varphi)h(P).$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Degree of a self-map on a projective variety

Definition

Suppose that $\varphi : X \longrightarrow X$ is a self-map on the projective algebraic variety X. The degree deg(φ) of the map φ can be defined as the spectral radius or maximal eigenvalue $\rho(\varphi^*)$ of the linear map induced on the Neron-Severi group $\varphi^* : NS_{\mathbb{R}}(X) \longrightarrow NS_{\mathbb{R}}(X)$.

イロン イヨン イヨン イヨン

Degree of a self-map on a projective variety

Definition

Suppose that $\varphi : X \longrightarrow X$ is a self-map on the projective algebraic variety X. The degree deg(φ) of the map φ can be defined as the spectral radius or maximal eigenvalue $\rho(\varphi^*)$ of the linear map induced on the Neron-Severi group $\varphi^* : NS_{\mathbb{R}}(X) \longrightarrow NS_{\mathbb{R}}(X)$.

Remark

The degree of a morphism behave properly in the sense that

$$\deg(\varphi^n) = \deg(\varphi)^n.$$

Canonical height for selfmaps on projective varieties

Theorem

(Canonical height) Let X be a smooth projective algebraic variety defined over a number field K. Suppose that $\varphi : X \longrightarrow X$ is a self-map of X in such a way that for some $\alpha > 1$ and for some divisor $D \in \text{Div}(X)$, we have $\varphi^*D \sim \alpha D$. We have the following:

Canonical height for selfmaps on projective varieties

Theorem

(Canonical height) Let X be a smooth projective algebraic variety defined over a number field K. Suppose that $\varphi : X \longrightarrow X$ is a self-map of X in such a way that for some $\alpha > 1$ and for some divisor $D \in \text{Div}(X)$, we have $\varphi^*D \sim \alpha D$. We have the following: (a) For all $P \in X(\overline{K})$, the following limits exists

$$\hat{h}_{D,\varphi}(P) = \lim_{n \to \infty} \alpha^{-n} h_D(\varphi^n(P)).$$

(b) ĥ_φ(φ(P)) = α ĥ_φ(P) for all P ∈ X(K).
(c) For D ample, ĥ_φ(P) = 0 if and only if P is pre-periodic for the map φ.

Canonical height for selfmaps on projective varieties

Theorem

(Canonical height) Let X be a smooth projective algebraic variety defined over a number field K. Suppose that $\varphi : X \longrightarrow X$ is a self-map of X in such a way that for some $\alpha > 1$ and for some divisor $D \in \text{Div}(X)$, we have $\varphi^*D \sim \alpha D$. We have the following: (a) For all $P \in X(\overline{K})$, the following limits exists

$$\hat{h}_{D,\varphi}(P) = \lim_{n \to \infty} \alpha^{-n} h_D(\varphi^n(P)).$$

(b) ĥ_φ(φ(P)) = αĥ_φ(P) for all P ∈ X(K).
(c) For D ample, ĥ_φ(P) = 0 if and only if P is pre-periodic for the map φ.

The condition $\varphi^* D \sim \alpha D$ is saying that D is an eigenvector associated to the eigenvalue $\alpha > 1$.

Morphisms on the n-dimensional projective space Morphisms on arbitrary projective varieties

イロト イヨト イヨト イヨト

Duplication on Elliptic curves

Let K be a number field. Consider the elliptic curve E with affine model E : $y^2 = G(x) = x^3 + px + q$, where p, q \in K. The map [2] : E(K) \longrightarrow E(K) represents multiplication by 2 or adding a point to itself in the group law of the points in E(K).

Morphisms on the n-dimensional projective space Morphisms on arbitrary projective varieties

・ロン ・回と ・ヨン・

Duplication on Elliptic curves

Let K be a number field. Consider the elliptic curve E with affine model $E: y^2 = G(x) = x^3 + px + q$, where $p, q \in K$. The map [2]: $E(K) \longrightarrow E(K)$ represents multiplication by 2 or adding a point to itself in the group law of the points in E(K). If $P = (x, y) \in E$ is a point with $y \neq 0$, this map is expressed in affine coordinates by:

$$[2](x,y) = \big(\frac{G'(x)^2 - 8xG(x)}{4G(x)}, \frac{G'(x)^3 - 12xG(x)G'(x) + 8G(x)^2}{8G(x)y}\big).$$

The pre-periodic points of the map are the torsion points in E(K). An ample symmetric line bundle $\mathcal{L} = \mathcal{L}^{-1}$ on E satisfies the equation $[2]^*\mathcal{L} \cong \mathcal{L}^4$. In this example, \mathcal{L} is an eigenvector for the map $[2]^*$ associated to the eigenvalue $\lambda = 4$.

・ロン ・回と ・ヨン・

Dynamics on a family of K3 surfaces

Consider the family $S_{a,b}$ of K3 surfaces studied by Wehler and later by Silverman. The family $S_{a,b} \subset \mathbb{P}^2 \times \mathbb{P}^2$ is determined by the two equations

$$\sum_{i,j=1}^{3}a_{i,j}x_{i}y_{j}=0, \qquad \sum_{i,j,k,l=1}^{3}b_{i,j,k,l}x_{i}x_{k}y_{j}y_{l}=0,$$

with coefficients in a number field K.

・ロン ・回と ・ヨン ・ヨン

Dynamics on a family of K3 surfaces

Consider the family $S_{a,b}$ of K3 surfaces studied by Wehler and later by Silverman. The family $S_{a,b} \subset \mathbb{P}^2 \times \mathbb{P}^2$ is determined by the two equations

$$\sum_{i,j=1}^{3}a_{i,j}x_{i}y_{j}=0, \qquad \sum_{i,j,k,l=1}^{3}b_{i,j,k,l}x_{i}x_{k}y_{j}y_{l}=0,$$

with coefficients in a number field K. When we fix each set of variables x or y, we get double coverings $p_1, p_2 : S_{a,b} \longrightarrow \mathbb{P}^2$ of \mathbb{P}^2_K that determine morphisms $\sigma_1, \sigma_2 : S_{a,b} \longrightarrow S_{a,b}$.

・ロト ・回ト ・ヨト ・ヨト

Dynamics on a family of K3 surfaces

Consider the family $S_{a,b}$ of K3 surfaces studied by Wehler and later by Silverman. The family $S_{a,b} \subset \mathbb{P}^2 \times \mathbb{P}^2$ is determined by the two equations

$$\sum_{i,j=1}^{3}a_{i,j}x_{i}y_{j}=0, \qquad \sum_{i,j,k,l=1}^{3}b_{i,j,k,l}x_{i}x_{k}y_{j}y_{l}=0,$$

with coefficients in a number field K. When we fix each set of variables x or y, we get double coverings $p_1, p_2: S_{a,b} \longrightarrow \mathbb{P}^2$ of \mathbb{P}^2_K that determine morphisms $\sigma_1, \sigma_2: S_{a,b} \longrightarrow S_{a,b}$. If we denote by $L_i = p_i^*\mathcal{O}_{\mathbb{P}^2}(1)$ and consider the \mathbb{R} -divisors

$$\mathsf{E}^+ = (2+\sqrt{3})\mathsf{L}_1 - \mathsf{L}_2, \qquad \mathsf{E}^- = -\mathsf{L}_1 + (2+\sqrt{3})\mathsf{L}_2,$$

Dynamics on a family of K3 surfaces

Consider the family $S_{a,b}$ of K3 surfaces studied by Wehler and later by Silverman. The family $S_{a,b} \subset \mathbb{P}^2 \times \mathbb{P}^2$ is determined by the two equations

$$\sum_{i,j=1}^{3}a_{i,j}x_{i}y_{j}=0, \qquad \sum_{i,j,k,l=1}^{3}b_{i,j,k,l}x_{i}x_{k}y_{j}y_{l}=0,$$

with coefficients in a number field K. When we fix each set of variables x or y, we get double coverings $p_1, p_2: S_{a,b} \longrightarrow \mathbb{P}^2$ of \mathbb{P}^2_K that determine morphisms $\sigma_1, \sigma_2: S_{a,b} \longrightarrow S_{a,b}$. If we denote by $L_i = p_i^*\mathcal{O}_{\mathbb{P}^2}(1)$ and consider the \mathbb{R} -divisors

$$\mathsf{E}^+ = (2+\sqrt{3})\mathsf{L}_1 - \mathsf{L}_2, \qquad \mathsf{E}^- = -\mathsf{L}_1 + (2+\sqrt{3})\mathsf{L}_2,$$

the geometry of the family $S_{\mathsf{a},\mathsf{b}}$ can be used to prove that

$$(\sigma_1 \circ \sigma_2)^{\pm 1*}(\mathsf{E}^{\pm}) = (7 + 4\sqrt{3})\mathsf{E}^{\pm}.$$

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

・ロン ・回と ・ヨン ・ヨン

Degree of rational maps on the projective spaces

Definition

Let $\varphi : \mathbb{P}^n \dashrightarrow \mathbb{P}^n$ be a dominant rational map. The degree deg (φ) can be defined in the same way we did for morphisms on \mathbb{P}^n as the degree of the polynomials defining $\varphi = (\varphi_0 : \varphi_1 : \cdots : \varphi_n)$.

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

Degree of rational maps on the projective spaces

Definition

Let $\varphi : \mathbb{P}^n \dashrightarrow \mathbb{P}^n$ be a dominant rational map. The degree deg (φ) can be defined in the same way we did for morphisms on \mathbb{P}^n as the degree of the polynomials defining $\varphi = (\varphi_0 : \varphi_1 : \cdots : \varphi_n)$.

Example

Consider the map $\varphi : \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ given by $\varphi(x : y : z) = (x^2 : yx : zx)$. The map φ is defined in the open set $U = \{x \neq 0\}$. The second iterate gives

$$\varphi^2(\mathsf{x}:\mathsf{y}:\mathsf{z})=(\mathsf{x}^4:\mathsf{y}\mathsf{x}^3:\mathsf{z}\mathsf{x}^3)=(\mathsf{x}:\mathsf{y}:\mathsf{z}).$$

This shows that in general

 $\deg(\varphi^{\mathsf{n}}) \neq \deg(\varphi)^{\mathsf{n}}.$

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

イロン イヨン イヨン イヨン

Definition of algebraically stable in codimension one

Definition

Consider a blowing up $\pi: \tilde{X} \to X$ of the indeterminacy I_{φ} of the rational map $\varphi: X \to X$. As explained in Example II.2.17.3 of Hartshorne, we can extend the rational map φ to a morphism $\tilde{\varphi}: \tilde{X} \to X$. We define $\varphi^*: NS(X) \to NS(X)$ by

$$\varphi^* = \pi_* \circ \tilde{\varphi}^*.$$

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

イロン 不同と 不同と 不同と

æ

Definition of algebraically stable in codimension one

Definition

Consider a blowing up $\pi: \tilde{X} \dashrightarrow X$ of the indeterminacy I_{φ} of the rational map $\varphi: X \dashrightarrow X$. As explained in Example II.2.17.3 of Hartshorne, we can extend the rational map φ to a morphism $\tilde{\varphi}: \tilde{X} \longrightarrow X$. We define $\varphi^*: NS(X) \longrightarrow NS(X)$ by

$$\varphi^* = \pi_* \circ \tilde{\varphi}^*.$$

Definition

(Fornaess and Sibony) A rational dominant map $\varphi : X \dashrightarrow X$ is said to be algebraically stable in codimension one if $(\varphi^n)^* = (\varphi^*)^n$. Morphisms are always algebraically stable maps by the functoriality $(\varphi \circ \varphi')^* = \varphi'^* \circ \varphi^*$.

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

< ロ > < 回 > < 回 > < 回 > <</p>

Definition of first dynamical degree of rational maps

Definition

(Guedj) Let X be a complex algebraic variety and $\varphi : X \dashrightarrow X$ be a dominant rational map. The (first) dynamical degree δ_{φ} of φ is the quantity defined in any of the following ways:

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

イロト イヨト イヨト イヨト

Definition of first dynamical degree of rational maps

Definition

(Guedj) Let X be a complex algebraic variety and $\varphi : X \dashrightarrow X$ be a dominant rational map. The (first) dynamical degree δ_{φ} of φ is the quantity defined in any of the following ways:

• $\delta_{\varphi} = \limsup_{n \to \infty} \rho(\varphi^{n*})^{1/n}$, where $\rho(\varphi^{n*})$ represents the spectral radius or maximal eigenvalue of the map $\varphi^{n*} : NS(X)_{\mathbb{R}} \longrightarrow NS(X)_{\mathbb{R}}$.

・ロン ・回と ・ヨン・

Definition of first dynamical degree of rational maps

Definition

(Guedj) Let X be a complex algebraic variety and $\varphi : X \dashrightarrow X$ be a dominant rational map. The (first) dynamical degree δ_{φ} of φ is the quantity defined in any of the following ways:

- $\delta_{\varphi} = \limsup_{n \to \infty} \rho(\varphi^{n*})^{1/n}$, where $\rho(\varphi^{n*})$ represents the spectral radius or maximal eigenvalue of the map $\varphi^{n*} : NS(X)_{\mathbb{R}} \longrightarrow NS(X)_{\mathbb{R}}$.
- ② $\delta_{\varphi} = \lim_{n \to \infty} (\deg_{H}(\varphi^{n}))^{1/n}$, where $\deg_{H}(\varphi) = (\varphi^{*}H, H^{n-1})$ represents the first degree relative to the ample divisor H in NS(X).

Definition of first dynamical degree of rational maps

Definition

(Guedj) Let X be a complex algebraic variety and $\varphi : X \dashrightarrow X$ be a dominant rational map. The (first) dynamical degree δ_{φ} of φ is the quantity defined in any of the following ways:

- $\delta_{\varphi} = \limsup_{n \to \infty} \rho(\varphi^{n*})^{1/n}$, where $\rho(\varphi^{n*})$ represents the spectral radius or maximal eigenvalue of the map $\varphi^{n*} : NS(X)_{\mathbb{R}} \longrightarrow NS(X)_{\mathbb{R}}$.
- ② $\delta_{\varphi} = \lim_{n \to \infty} (\deg_{H}(\varphi^{n}))^{1/n}$, where $\deg_{H}(\varphi) = (\varphi^{*}H, H^{n-1})$ represents the first degree relative to the ample divisor H in NS(X).

Remark

For an algebraically stable map, $\delta_{\varphi} = \rho(\varphi)$ is an algebraic integer.

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

イロト イヨト イヨト イヨト

The case of rational maps on the projective space

Remark

For a dominant rational map $\varphi : \mathbb{P}^n \dashrightarrow \mathbb{P}^n$, the structure of the Neron-Severi group $(NS_{\mathbb{R}}(\mathbb{P}^n) = \mathbb{R})$ allows us to define the first dynamical also as

 $\delta_{\varphi} = \limsup_{n \to \infty} (\deg(\varphi^n))^{1/n}.$

The case of rational maps on the projective space

Remark

For a dominant rational map $\varphi : \mathbb{P}^n \dashrightarrow \mathbb{P}^n$, the structure of the Neron-Severi group $(NS_{\mathbb{R}}(\mathbb{P}^n) = \mathbb{R})$ allows us to define the first dynamical also as

$$\delta_arphi = \limsup_{n o \infty} (\deg(arphi^n))^{1/n}.$$

Example

Let $\varphi : \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ be given by $\varphi(x : y : z) = (xy : xz : z^2)$ then $\varphi^2(x : y : z) = (x^2yz : xyz^2 : z^4) = (x^2y : xyz : z^3)$. So we have, $\deg(\varphi) = 2$, $\deg(\varphi^2) = 3$ and we can see in general that $\deg(\varphi^n) = F_{n+1}$ is given by the Fibonacci sequence and therefore

$$\deg(arphi^{\mathsf{n}}) pprox ((1+\sqrt{5})/2)^{\mathsf{n}} \Rightarrow \delta_{arphi} = (1+\sqrt{5})/2$$

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

イロト イヨト イヨト イヨト

Examples of dynamical degrees

Example

Let $\varphi : \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ be given by $\varphi(x : y : z) = (x^2 : xz : y^2)$. The indeterminacy locus is set-theoretically (0 : 0 : 1) and the formula for the iterates are

$$\varphi^{2n}(\mathbf{x} : \mathbf{y} : \mathbf{z}) = (\mathbf{x}^{2^{n}} : \mathbf{y}^{2^{n}} : \mathbf{z}^{2^{n}}),$$
$$\varphi^{2n-1}(\mathbf{x} : \mathbf{y} : \mathbf{z}) = (\mathbf{x}^{2^{n}} : \mathbf{x}^{2^{n-1}}\mathbf{z}^{2^{n-1}} : \mathbf{y}^{2^{n}}),$$

and

$$\delta_{\varphi} = \sqrt{2}.$$

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

ヘロン 人間と 人間と 人間と

Examples of dynamical degrees

Example

Let $\varphi : \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ be given by $\varphi(x : y : z) = (x^2 : xz : y^2)$. The indeterminacy locus is set-theoretically (0 : 0 : 1) and the formula for the iterates are

$$\varphi^{2n}(\mathbf{x} : \mathbf{y} : \mathbf{z}) = (\mathbf{x}^{2^{n}} : \mathbf{y}^{2^{n}} : \mathbf{z}^{2^{n}}),$$
$$\varphi^{2n-1}(\mathbf{x} : \mathbf{y} : \mathbf{z}) = (\mathbf{x}^{2^{n}} : \mathbf{x}^{2^{n-1}}\mathbf{z}^{2^{n-1}} : \mathbf{y}^{2^{n}}),$$

$$\delta_{\varphi} = \sqrt{2}.$$

Remark

The dynamical degree of all our examples are algebraic integers.

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

・ロト ・回ト ・ヨト ・ヨト

An algebraically stable rational map that is not a morphism

Example

Let $\varphi : \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ be given in projective coordinates by $\varphi(x : y : z) = (x^3 + yz^2 : xz^2 + y^2z : z^3)$. The indeterminacy locus is (0 : 1 : 0). The iterates are

$$\begin{split} \varphi(\mathbf{x} : \mathbf{y} : \mathbf{z}) &= (\mathbf{x}^3 + \mathbf{y}\mathbf{z}^2 : \mathbf{x}\mathbf{z}^2 + \mathbf{y}^2\mathbf{z} : \mathbf{z}^3), \\ \varphi^2(\mathbf{x} : \mathbf{y} : \mathbf{z}) &= (\mathbf{x}^9 + \mathbf{z}\mathsf{P}(\mathbf{x}, \mathbf{y}, \mathbf{z}) : \mathbf{z}^3\mathsf{Q}(\mathbf{x}, \mathbf{y}, \mathbf{z}) : \mathbf{z}^9), \\ \varphi^n(\mathbf{x} : \mathbf{y} : \mathbf{z}) &= (\mathbf{x}^{3^n} + \mathbf{z}\mathsf{P}_n(\mathbf{x}, \mathbf{y}, \mathbf{z}) : \mathbf{z}^{3^{n-1}}\mathsf{Q}_n(\mathbf{x}, \mathbf{y}, \mathbf{z}), \mathbf{z}^{3^n}), \end{split}$$

and therefore $\deg(\varphi^n) = 3^n$ and $\delta_{\varphi} = \deg(\varphi) = 3$.

Extension of Canonical height to numerical equivalence

Theorem

(Kawaguchi, Silverman) Assume that $\varphi : X \longrightarrow X$ is a morphism defined over the number field K and suppose that $D \in \text{Div}_{\mathbb{R}}(X)$ is a divisor that satisfy the numerical equivalence:

 $\varphi^* D \equiv \beta D$ for some real number $\beta > \sqrt{\delta_{\varphi}}$,

Then we have the following:

Extension of Canonical height to numerical equivalence

Theorem

(Kawaguchi, Silverman) Assume that $\varphi : X \longrightarrow X$ is a morphism defined over the number field K and suppose that $D \in \text{Div}_{\mathbb{R}}(X)$ is a divisor that satisfy the numerical equivalence:

 $\varphi^* D \equiv \beta D$ for some real number $\beta > \sqrt{\delta_{\varphi}}$,

Then we have the following:

(a) For all $P \in X(\overline{K})$, the following limits exists:

$$\hat{h}_{D,\varphi}(P) = \lim_{n \to \infty} \beta^{-n} h_D(\varphi^n(P)).$$

(b) For all P ∈ X(K), ĥ_{D,φ}(φ(P)) = βĥ_{D,φ}(P).
(c) For D ample, ĥ_{D,φ}(P) = 0 if and only if P is pre-periodic for φ.

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

イロト イヨト イヨト イヨト

Some technical details: Ample and Nef divisors

Proposition

(Kawaguchi, Silverman) The δ_{φ} can be defined as the limit (no need the lim sup)

$$\delta_{arphi} = \lim_{n o \infty}
ho(arphi^{n*})^{1/n}.$$

イロン イヨン イヨン イヨン

Some technical details: Ample and Nef divisors

Proposition

(Kawaguchi, Silverman) The δ_{φ} can be defined as the limit (no need the lim sup)

$$\delta_{\varphi} = \lim_{n \to \infty} \rho(\varphi^{n*})^{1/n}.$$

The proof uses the introduction of different cones in NS_{\mathbb{R}}(X): the cone Amp(X) of ample \mathbb{R} -divisors and the cone Nef(X) of numerically effective (**nef**) \mathbb{R} -divisors.

Some technical details: Ample and Nef divisors

Proposition

(Kawaguchi, Silverman) The δ_{φ} can be defined as the limit (no need the lim sup)

$$\delta_{\varphi} = \lim_{n \to \infty} \rho(\varphi^{n*})^{1/n}.$$

The proof uses the introduction of different cones in $NS_{\mathbb{R}}(X)$: the cone Amp(X) of ample \mathbb{R} -divisors and the cone Nef(X) of numerically effective (**nef**) \mathbb{R} -divisors.

Definition

(Nakai-Moishezon criterium) A divisor D is said to be ample if for all irreducible subvarieties V of dimension k > 0, $(\mathsf{D}^k,\mathsf{V}) > 0$. (Kleiman's theorem) A divisor is said to be **nef** if for all irreducible subvarieties V of dimension k > 0, $(\mathsf{D}^k,\mathsf{V}) \ge 0$.

< ロ > < 同 > < 回 > < 正 > < 正

Morphisms with positive entropy admit polarization

One good reason to study nef divisors is provided by the following

Remark

Assume that $\varphi : X \longrightarrow X$ is a morphism defined over the number field K. There is always a **nef** divisor D, such that

$$\varphi^* D \equiv \delta_\varphi D.$$

For a morphism of positive entropy $(\delta_{\varphi} > 1)$, we will have a canonical height satisfying:

(a)
$$\hat{h}_{D,\varphi}(P) = \lim_{n \to \infty} \delta_{\varphi}^{-n} h_D(\varphi^n(P)).$$

(b) For all $P \in X(\bar{K})$, $\hat{h}_{D,\varphi}(\varphi(P)) = \delta_{\varphi} \hat{h}_{D,\varphi}(P).$

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

イロン イヨン イヨン イヨン

Effective and pseudo-effective divisors

Definition

A divisor $D\in \text{Div}_{\mathbb{R}}$ is effective $(D\succeq 0)$ if it can be written as a sum $\sum c_i D_i$, where D_i are effective and $c_i\in \mathbb{R}$ are positive. The cone of \mathbb{R} -effective divisors is denoted by Eff(X). The closure $\overline{\text{Eff}(X)}$ of Eff(X) represent the cone of pseudo-effective divisors.

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

・ロト ・日本 ・モート ・モート

Effective and pseudo-effective divisors

Definition

A divisor $D\in \text{Div}_{\mathbb{R}}$ is effective $(D\succeq 0)$ if it can be written as a sum $\sum c_i D_i$, where D_i are effective and $c_i\in\mathbb{R}$ are positive. The cone of \mathbb{R} -effective divisors is denoted by Eff(X). The closure $\overline{\text{Eff}(X)}$ of Eff(X) represent the cone of pseudo-effective divisors.

Remark

The cone of nef divisors is closed, in fact we have the inclusion

 $\overline{\mathsf{Amp}(X)} = \mathsf{Nef}(X) \subset \overline{\mathsf{Eff}(X)}.$

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

Effective and pseudo-effective divisors

Definition

A divisor $D\in \text{Div}_{\mathbb{R}}$ is effective $(D\succeq 0)$ if it can be written as a sum $\sum c_i D_i$, where D_i are effective and $c_i\in\mathbb{R}$ are positive. The cone of \mathbb{R} -effective divisors is denoted by Eff(X). The closure $\overline{\text{Eff}(X)}$ of Eff(X) represent the cone of pseudo-effective divisors.

Remark

The cone of nef divisors is closed, in fact we have the inclusion

$$\overline{\operatorname{Amp}(X)} = \operatorname{Nef}(X) \subset \overline{\operatorname{Eff}(X)}.$$

Example

The divisors $E^+ = (2 + \sqrt{3})L_1 - L_2$ and $E^- = -L_1 + (2 + \sqrt{3})L_2$ on Wheler family of K3 surfaces are in $\overline{Eff(S)} \setminus Eff(S)$.

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

・ロン ・回と ・ヨン ・ヨン

Several norms for operators on the Neron-Severi group

We can define several norms for endomorphisms of the finitely dimension \mathbb{R} -vector space NS_{\mathbb{R}}(X):

$$\|A\|' = \sup_{v \neq 0 \in \mathsf{Nef}} \frac{|Av|}{|v|}, \qquad \qquad \|A\|'' = \sup_{v \neq 0 \in \overline{\mathsf{Eff}}} \frac{|Av|}{|v|},$$

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

Several norms for operators on the Neron-Severi group

We can define several norms for endomorphisms of the finitely dimension $\mathbb R\text{-vector}$ space $\mathsf{NS}_{\mathbb R}(X)$:

$$\|A\|' = \sup_{v \neq 0 \in \mathsf{Nef}} \frac{|Av|}{|v|}, \qquad \qquad \|A\|'' = \sup_{v \neq 0 \in \overline{\mathsf{Eff}}} \frac{|Av|}{|v|},$$

Lemma

Let $||.|| = ||.||_{\infty}$ denotes the usual sup norm of the matrix A_{φ^*} representing the map φ^* on a fixed basis of NS(X), for some positive constants C, C_1 and C_2 we can prove::

$$\begin{split} \|(\varphi^{n+m})^*\|' &\leq C \|(\varphi^n)^*\|'\|(\varphi^m)^*\|'', \\ \|(\varphi^n)^*\|' &\leq C_1 \|(\varphi^*)^n\|', \\ \|(\varphi^{n+m})^*\| &\leq C_2 \|(\varphi^n)^*\|\|(\varphi^m)^*\|. \end{split}$$

・ロト ・回ト ・ヨト ・ヨト

Presentation of A family of four-folds with three involutions

A situation similar to Wheler family is as follows. Consider the family $\{X^{A,B}\}_{A,B}$ defined in $\mathbb{P}^2_K\times\mathbb{P}^2_K\times\mathbb{P}^2_K$ by equations

$$\begin{split} L(x,y,z) &= \sum_{i,j,k=0}^2 a_{i,j,k} x_i y_j z_k = 0, \\ Q(x,y,z) &= \sum_{i,j,k,l,m,n=0}^2 b_{i,j,k,l,m,n} x_i x_l y_j y_m z_k z_n = 0, \end{split}$$

where $A=(a_{ijk}),~B=(b_{i,j,k,l,m,n})$ and all indices are moving in the set $\{0,1,2\}.$

Presentation of A family of four-folds with three involutions

A situation similar to Wheler family is as follows. Consider the family $\{X^{A,B}\}_{A,B}$ defined in $\mathbb{P}^2_K\times\mathbb{P}^2_K\times\mathbb{P}^2_K$ by equations

$$\begin{split} L(x,y,z) &= \sum_{i,j,k=0}^2 a_{i,j,k} x_i y_j z_k = 0, \\ Q(x,y,z) &= \sum_{i,j,k,l,m,n=0}^2 b_{i,j,k,l,m,n} x_i x_l y_j y_m z_k z_n = 0, \end{split}$$

where A = (a_{ijk}), B = (b_{i,j,k,l,m,n}) and all indices are moving in the set {0,1,2}. When we fix two of the variables we get the intersection on \mathbb{P}^2 of a quadric and a line, which is general, will give two points P_i, P'_i \in X for i = 1,2,3 and will determine involutions $\sigma_1, \sigma_2, \sigma_3 : X \dashrightarrow X$. The involutions σ_i for i = 1,2,3, will not be in general morphisms but just rational maps defined on certain open sets U_i \subset X.

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

イロト イヨト イヨト イヨト

Pull-backs of Hyperplanes to X

To study the action of the σ_i^* on Pic(X) we denote by H, H' hyperplane sections representing the two fundamental classes in $Pic(\mathbb{P}^2 \times \mathbb{P}^2)$,

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

イロト イヨト イヨト イヨト

Pull-backs of Hyperplanes to X

To study the action of the σ_i^* on Pic(X) we denote by H, H' hyperplane sections representing the two fundamental classes in $Pic(\mathbb{P}^2 \times \mathbb{P}^2)$,

$$\begin{split} H &= \{ ((a_0:a_1:a_2), (b_0:b_1:b_2)) \in \mathbb{P}^2 \times \mathbb{P}^2: a_0 = 0 \}, \\ H' &= \{ ((a_0:a_1:a_2), (b_0:b_1:b_2)) \in \mathbb{P}^2 \times \mathbb{P}^2: b_0 = 0 \}. \end{split}$$

・ロン ・回 と ・ 回 と ・ 回 と

Pull-backs of Hyperplanes to X

To study the action of the σ_i^* on Pic(X) we denote by H, H' hyperplane sections representing the two fundamental classes in $Pic(\mathbb{P}^2 \times \mathbb{P}^2)$,

$$\mathsf{H} = \{((\mathsf{a}_0:\mathsf{a}_1:\mathsf{a}_2),(\mathsf{b}_0:\mathsf{b}_1:\mathsf{b}_2)) \in \mathbb{P}^2 \times \mathbb{P}^2:\mathsf{a}_0 = 0\},$$

$$H'=\{((a_0:a_1:a_2),(b_0:b_1:b_2))\in \mathbb{P}^2\times \mathbb{P}^2: b_0=0\}.$$

Also when we take points $\mathsf{P}=(\mathsf{x}_0:\mathsf{x}_1:\mathsf{x}_2,\mathsf{y}_0:\mathsf{y}_1:\mathsf{y}_2,\mathsf{z}_0:\mathsf{z}_1:\mathsf{z}_2)$ in X, we want to define the divisors $\mathsf{D}_\mathsf{x},\mathsf{D}_\mathsf{y}$ and D_z by:

$$\begin{split} D_x &= \{P \in X: x_0 = 0\}, \qquad D_y = \{P \in X: y_0 = 0\}, \\ D_z &= \{P \in X: z_0 = 0\}. \end{split}$$

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

・ロン ・回と ・ヨン ・ヨン

æ

Pull-backs of divisors in X

The pullbacks of H, H' by the different projections give back the divisors $\mathsf{D}_x,\mathsf{D}_y,\mathsf{D}_z,$

$$\mathsf{p}^*_{\mathsf{x}\mathsf{y}}\mathsf{H}=\mathsf{p}^*_3\mathsf{H}=\mathsf{D}_\mathsf{x},\quad \mathsf{p}^*_{\mathsf{x}\mathsf{y}}\mathsf{H}'=\mathsf{p}^*_3\mathsf{H}'=\mathsf{D}_\mathsf{y},$$

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

・ロン ・回と ・ヨン ・ヨン

æ

Pull-backs of divisors in X

The pullbacks of H, H^\prime by the different projections give back the divisors $D_x, D_y, D_z,$

$$\mathsf{p}^*_{\mathsf{x}\mathsf{y}}\mathsf{H}=\mathsf{p}^*_3\mathsf{H}=\mathsf{D}_\mathsf{x},\quad \mathsf{p}^*_{\mathsf{x}\mathsf{y}}\mathsf{H}'=\mathsf{p}^*_3\mathsf{H}'=\mathsf{D}_\mathsf{y},$$

$$p_{xz}^*H=p_2^*H=D_x,\qquad p_{xz}^*H'=p_2^*H'=D_z,$$

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

・ロン ・回と ・ヨン・

2

Pull-backs of divisors in X

The pullbacks of H, H^\prime by the different projections give back the divisors $D_x, D_y, D_z,$

$$\mathsf{p}_{xy}^*\mathsf{H}=\mathsf{p}_3^*\mathsf{H}=\mathsf{D}_x,\quad \mathsf{p}_{xy}^*\mathsf{H}'=\mathsf{p}_3^*\mathsf{H}'=\mathsf{D}_y,$$

$$p_{xz}^*H=p_2^*H=D_x,\qquad p_{xz}^*H'=p_2^*H'=D_z,$$

$$p_{yz}^*H=p_1^*H=D_y,\qquad p_{yz}^*H'=p_1^*H'=D_z.$$

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

イロン 不同と 不同と 不同と

æ

Action of the σ_i^* .

The action of the σ_i^* 's on the divisors D_x, D_y, D_z is expressed by:

$$\begin{split} &\sigma_1^*(\mathsf{D}_x) = \mathsf{p}_1^*\mathsf{p}_{1*}\mathsf{D}_x - \mathsf{D}_x \sim 4\mathsf{D}_y + 4\mathsf{D}_z - \mathsf{D}_x, \\ &\sigma_1^*(\mathsf{D}_y) = \sigma_1^*\mathsf{p}_1^*\mathsf{H} = (\mathsf{p}_1 \circ \sigma_1)^*\mathsf{H} = \mathsf{D}_y, \\ &\sigma_1^*(\mathsf{D}_z) = \sigma_1^*\mathsf{p}_1^*\mathsf{H}' = (\mathsf{p}_1 \circ \sigma_1)^*\mathsf{H}' = \mathsf{D}_z, \\ &\sigma_2^*(\mathsf{D}_x) = \sigma_2\mathsf{p}_2^*\mathsf{H} = (\mathsf{p}_2 \circ \sigma_2)^*\mathsf{H}' = \mathsf{D}_x, \\ &\sigma_2^*(\mathsf{D}_y) = \mathsf{p}_2^*\mathsf{p}_{2*}\mathsf{D}_y - \mathsf{D}_y \sim 4\mathsf{D}_x + 4\mathsf{D}_z - \mathsf{D}_y, \\ &\sigma_2^*(\mathsf{D}_z) = \sigma_2^*\mathsf{p}_2^*\mathsf{H}' = (\mathsf{p}_2 \circ \sigma_2)^*\mathsf{H}' = \mathsf{D}_z, \\ &\sigma_3^*(\mathsf{D}_x) = \sigma_3^*\mathsf{p}_3^*\mathsf{H} = (\mathsf{p}_3 \circ \sigma_3)^*\mathsf{H} = \mathsf{D}_x, \\ &\sigma_3^*(\mathsf{D}_y) = \sigma_3^*\mathsf{p}_3^*\mathsf{H}' = (\mathsf{p}_3 \circ \sigma_3)^*\mathsf{H}' = \mathsf{D}_y, \\ &\sigma_3^*(\mathsf{D}_z) = \mathsf{p}_3^*\mathsf{p}_3_*\mathsf{D}_z - \mathsf{D}_z \sim 4\mathsf{D}_x + 4\mathsf{D}_y - \mathsf{D}_z. \end{split}$$

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

イロン イヨン イヨン イヨン

æ

Action of the involutions

Theorem

The involutions σ_1 , σ_2 and σ_3 are algebraically stable maps.

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

イロン イヨン イヨン イヨン

Action of the involutions

Theorem

The involutions σ_1 , σ_2 and σ_3 are algebraically stable maps.

The matrices associated with action of these maps on $\mathsf{NS}_{\mathbb{R}}$ are:

$$\sigma_{1}^{*} = \begin{pmatrix} -1 & 4 & 4 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \sigma_{2}^{*} = \begin{pmatrix} 1 & 0 & 0 \\ 4 & -1 & 4 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\sigma_{3}^{*} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 4 & -1 \end{pmatrix}$$

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

イロト イヨト イヨト イヨト

Action of the composition of two involutions

The matrices associated to the composition of any two of the involutions are:

$$\sigma_{12}^* = \begin{pmatrix} -1 & -4 & 0 \\ 4 & 15 & 0 \\ 4 & 20 & 1 \end{pmatrix} \qquad \sigma_{21}^* = \begin{pmatrix} 15 & 4 & 0 \\ -4 & -1 & 0 \\ 20 & 4 & 1 \end{pmatrix}$$

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

イロト イヨト イヨト イヨト

Action of the composition of two involutions

The matrices associated to the composition of any two of the involutions are:

$$\sigma_{12}^* = \begin{pmatrix} -1 & -4 & 0 \\ 4 & 15 & 0 \\ 4 & 20 & 1 \end{pmatrix} \qquad \sigma_{21}^* = \begin{pmatrix} 15 & 4 & 0 \\ -4 & -1 & 0 \\ 20 & 4 & 1 \end{pmatrix}$$
$$\sigma_{32}^* = \begin{pmatrix} 1 & 4 & 20 \\ 0 & -1 & -4 \\ 0 & 4 & 15 \end{pmatrix} \qquad \sigma_{23}^* = \begin{pmatrix} 1 & 20 & 4 \\ 0 & 15 & 4 \\ 0 & -4 & -1 \end{pmatrix}$$

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

イロト イヨト イヨト イヨト

Action of the composition of two involutions

The matrices associated to the composition of any two of the involutions are:

$$\sigma_{12}^* = \begin{pmatrix} -1 & -4 & 0 \\ 4 & 15 & 0 \\ 4 & 20 & 1 \end{pmatrix} \qquad \sigma_{21}^* = \begin{pmatrix} 15 & 4 & 0 \\ -4 & -1 & 0 \\ 20 & 4 & 1 \end{pmatrix}$$
$$\sigma_{32}^* = \begin{pmatrix} 1 & 4 & 20 \\ 0 & -1 & -4 \\ 0 & 4 & 15 \end{pmatrix} \qquad \sigma_{23}^* = \begin{pmatrix} 1 & 20 & 4 \\ 0 & 15 & 4 \\ 0 & -4 & -1 \end{pmatrix}$$
$$\sigma_{31}^* = \begin{pmatrix} -1 & 0 & -4 \\ 4 & 1 & 20 \\ 4 & 0 & 15 \end{pmatrix} \qquad \sigma_{13}^* = \begin{pmatrix} 15 & 0 & 4 \\ 20 & 1 & 4 \\ -4 & 0 & -1 \end{pmatrix}$$

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

・ロン ・回と ・ヨン・

Dynamical degree of rational maps on four-folds.

Theorem

Suppose that X is smooth and therefore the Picard number p(X) = 3, then the first dynamical degree $\delta_{\sigma_{ij}}$ of the algebraically stable map σ_{ij} is $\delta_{\sigma_{ij}} = \beta = 7 + 4\sqrt{3}$.

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

Dynamical degree of rational maps on four-folds.

Theorem

Suppose that X is smooth and therefore the Picard number p(X) = 3, then the first dynamical degree $\delta_{\sigma_{ij}}$ of the algebraically stable map σ_{ij} is $\delta_{\sigma_{ij}} = \beta = 7 + 4\sqrt{3}$.

Proof.

The divisors D_x , D_y , D_z represent three distinct classes in $NS(X)_{\mathbb{Q}}$. If the Picard number p(X) = 3, then we have that $NS(X)_{\mathbb{Q}}$ is the subspace spanned by D_x , D_y , D_z and the dynamial degree is:

$$\delta_{\sigma_{ij}} = \limsup_{\substack{n \to \infty \\ n \to \infty}} \rho((\sigma_{ij}^{n})^{n})^{1/n} = \limsup_{\substack{n \to \infty}} (\beta^{n})^{1/n} = \beta_{ij}$$

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

・ロト ・回ト ・ヨト ・ヨト

2

Questions on a family of four-folds.

Question

Can we describe the cones $Amp(X_{A,B})$ and $Nef(X_{A,B})$ for smooth members of the family $\{X^{A,B}\}_{A,B}$?

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

イロト イヨト イヨト イヨト

Questions on a family of four-folds.

Question

Can we describe the cones $Amp(X_{A,B})$ and $Nef(X_{A,B})$ for smooth members of the family $\{X^{A,B}\}_{A,B}$?

Remark

(Silverman) In the similar case of $X = S_{a,b}$ being a Wheler K3 surface we have

$$Amp(S_{a,b}) = Eff(S_{a,b}),$$
$$Nef(S_{a,b}) = \overline{Eff(S_{a,b})},$$

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Questions on a family of four-folds.

Question

Can we compute the norms $\|\sigma_i\|', \|\sigma_i\|'', \|\sigma_{i,j}\|'$ and $\|\sigma_{i,j}\|''$?

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

イロト イヨト イヨト イヨト

Questions on a family of four-folds.

Question

Can we compute the norms $\|\sigma_i\|', \|\sigma_j\|'', \|\sigma_{i,j}\|'$ and $\|\sigma_{i,j}\|''$?

Remark

(Silverman) For example for Wheler family of K3 surfaces $S_{a,b}$ and the involutions $\sigma_1, \sigma_2 : S_{a,b} \longrightarrow S_{a,b}$ we have:

$$\|\sigma_i\|' = \|\sigma_i\|'' = \sqrt{17} + \frac{\sqrt{8\sqrt{3}}}{\sqrt{8+4\sqrt{3}}}$$

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

・ロト ・回ト ・ヨト ・ヨト

æ

Relation of heights of iterates on the n-projective space

イロン イヨン イヨン イヨン

Relation of heights of iterates on the n-projective space

Proposition

(Silverman) Let $\varphi : \mathbb{P}^n \dashrightarrow \mathbb{P}^m$ be a rational map of degree d defined over $\overline{\mathbb{Q}}$. Let I_{φ} be the subset of common zeroes of the φ_i 's.

 (a) There exists a constant C₁ such that h(φ(P)) ≤ dh(P) + C₁ for all P ∈ Pⁿ(Q̄) \ I_φ.

イロン イヨン イヨン イヨン

Relation of heights of iterates on the n-projective space

Proposition

(Silverman) Let $\varphi : \mathbb{P}^n \dashrightarrow \mathbb{P}^m$ be a rational map of degree d defined over $\overline{\mathbb{Q}}$. Let I_{φ} be the subset of common zeroes of the φ_i 's.

- (a) There exists a constant C_1 such that $h(\varphi(P)) \leq dh(P) + C_1$ for all $P \in \mathbb{P}^n(\overline{\mathbb{Q}}) \setminus I_{\varphi}$.
- (b) Let X ⊂ Pⁿ a subvariety with the property X ∩ I_φ = Ø, then there exist a constant C₂ such that h(φ(P)) ≥ dh(P) − C₂ for all P ∈ X(Q̄).

Relation of heights of iterates on the n-projective space

Proposition

(Silverman) Let $\varphi : \mathbb{P}^n \dashrightarrow \mathbb{P}^m$ be a rational map of degree d defined over $\overline{\mathbb{Q}}$. Let I_{φ} be the subset of common zeroes of the φ_i 's.

- (a) There exists a constant C_1 such that $h(\varphi(P)) \leq dh(P) + C_1$ for all $P \in \mathbb{P}^n(\overline{\mathbb{Q}}) \setminus I_{\varphi}$.
- (b) Let X ⊂ Pⁿ a subvariety with the property X ∩ I_φ = Ø, then there exist a constant C₂ such that h(φ(P)) ≥ dh(P) − C₂ for all P ∈ X(Q

 .

Remark

It is not true in general that $h(\varphi(P)) \ge dh(P) + C_2$ for all $P \in \mathbb{P}^n(\overline{\mathbb{Q}}) \setminus I_{\varphi}$, for example take $\varphi(x : y : z) = (x^2 : y^2 : xz)$.

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

The D-ration of a rational map

Motivation

For a morphism $\varphi : \mathbb{P}^n \longrightarrow \mathbb{P}^n$ and a hyperplane H, the coefficient of H in φ^*H is just deg (φ) and therefore we have that

$$rac{1}{\mathsf{deg}(arphi)}arphi^* \mathsf{H} - \mathsf{H} \succeq \mathsf{0}.$$

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

The D-ration of a rational map

Motivation

For a morphism $\varphi : \mathbb{P}^n \longrightarrow \mathbb{P}^n$ and a hyperplane H, the coefficient of H in φ^*H is just deg (φ) and therefore we have that

 $\frac{1}{\deg(\varphi)}\varphi^*H - H \succeq 0.$

For a rational map $\varphi : \mathbb{P}^n \dashrightarrow \mathbb{P}^n$ whose indeterminacy locus I_{φ} is contained in a hyperplane H, we take a resolution of the indeterminacy $\pi : \tilde{X} \dashrightarrow \mathbb{P}^n$ and a morphism $\tilde{\varphi} : \tilde{X} \longrightarrow \mathbb{P}^n$ extending φ and consider the numbers δ such that the divisor

$$\frac{1}{\delta}\tilde{\varphi}^*H - \pi^*H$$

is an effective divisor.

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

・ロト ・回ト ・ヨト ・ヨト

æ

D-ratio: the definition

Definition

(Joey) The D-ratio is the constant $r(\varphi)$ such that:

$$\frac{\mathsf{deg}(\varphi)}{\mathsf{r}(\varphi)} = \sup_{\delta} \{ \delta : \frac{1}{\delta} \tilde{\varphi}^* \mathsf{H} - \pi^* \mathsf{H} \quad \text{is} \quad \mathbb{A}^n - \mathsf{effective} \}.$$

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

イロト イヨト イヨト イヨト

D-ratio: the definition

Definition

(Joey) The D-ratio is the constant $r(\varphi)$ such that:

$$\frac{\text{deg}(\varphi)}{\mathsf{r}(\varphi)} = \sup_{\delta} \{ \delta : \frac{1}{\delta} \tilde{\varphi}^* \mathsf{H} - \pi^* \mathsf{H} \quad \text{is} \quad \mathbb{A}^{\mathsf{n}} - \text{effective} \}.$$

With the help of the D-ratio we can have part (b) of the proposition relating the height of a point and its image in a thicker set:

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

イロト イヨト イヨト イヨト

D-ratio: the definition

Definition

(Joey) The D-ratio is the constant $r(\varphi)$ such that:

$$\frac{\text{deg}(\varphi)}{\mathsf{r}(\varphi)} = \sup_{\delta} \{ \delta : \frac{1}{\delta} \tilde{\varphi}^* \mathsf{H} - \pi^* \mathsf{H} \quad \text{is} \quad \mathbb{A}^n - \text{effective} \}.$$

With the help of the D-ratio we can have part (b) of the proposition relating the height of a point and its image in a thicker set:

Theorem

(Joey) There exist a constant C'_2 , depending only on φ , such that $\frac{r(\varphi)}{\deg(\varphi)}h(\varphi(P)) + C'_2 > h(P)$ for all $P \in \mathbb{P}^n(\overline{K}) \setminus H$.

・ロト ・回ト ・ヨト ・ヨト

Valuative criterion

Let $\varphi : \mathbb{P}^n \dashrightarrow \mathbb{P}^n$ be a rational map whose indeterminacy locus I_{φ} is contained in a hyperplane H. Let $\pi : \tilde{X} \dashrightarrow \mathbb{P}^n$ be a resolution of the indeterminacy and $\tilde{\varphi} : \tilde{X} \longrightarrow \mathbb{P}^n$ a resolving morphism. Suppose that $\{H_V = \pi^*H, E_1, \ldots, E_r\}$ is a basis for $\text{Pic}(\tilde{X})$, where π^*H represents the proper transform of H and the E_i are coming from the monomial transformations needed to obtain π . We have:

$$\pi^*\mathsf{H} = \mathsf{a}_0\mathsf{H}_\mathsf{V} + \sum \mathsf{a}_i\mathsf{E}_i \quad \text{and} \quad \tilde{\varphi}^*\mathsf{H} = \mathsf{b}_0\mathsf{H}_\mathsf{V} + \sum \mathsf{b}_i\mathsf{E}_i.$$

Valuative criterion

Let $\varphi : \mathbb{P}^n \dashrightarrow \mathbb{P}^n$ be a rational map whose indeterminacy locus I_{φ} is contained in a hyperplane H. Let $\pi : \tilde{X} \dashrightarrow \mathbb{P}^n$ be a resolution of the indeterminacy and $\tilde{\varphi} : \tilde{X} \longrightarrow \mathbb{P}^n$ a resolving morphism. Suppose that $\{H_V = \pi^*H, E_1, \ldots, E_r\}$ is a basis for $\text{Pic}(\tilde{X})$, where π^*H represents the proper transform of H and the E_i are coming from the monomial transformations needed to obtain π . We have:

$$\pi^*\mathsf{H} = \mathsf{a}_0\mathsf{H}_\mathsf{V} + \sum \mathsf{a}_i\mathsf{E}_i \quad \text{and} \quad \tilde{\varphi}^*\mathsf{H} = \mathsf{b}_0\mathsf{H}_\mathsf{V} + \sum \mathsf{b}_i\mathsf{E}_i.$$

Remark

If $b_i \neq 0$ for all $a_i \neq 0$ we can take the D-ratio as

$$r(\varphi) = \deg(\varphi) \max_{i}(\frac{a_{i}}{b_{i}}).$$

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

・ロト ・日本 ・モート ・モート

Examples of D-ratios

Example

Let $\psi : \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ be the rational map given in projective coordinates by $\psi(x, y, z) = (x^3 + yz^2, xz^2 + y^2z, z^3)$ and consider a hyperplane H containing the point of indeterminacy (0, 1, 0) of the map ψ . In order to resolve the indeterminacy of ψ , we need to do three blow-ups along points. We obtain the pull-backs of H as:

$$\begin{split} \pi^*_\psi \mathsf{H} &= \mathsf{H}_\mathsf{V} + \mathsf{E}_1 + 2\mathsf{E}_2 + 3\mathsf{E}_3, \qquad \tilde{\psi}^*\mathsf{H} = 3\mathsf{H}_\mathsf{V} + 2\mathsf{E}_1 + 4\mathsf{E}_2 + 6\mathsf{E}_3. \end{split}$$
 Thus $\mathsf{r}(\psi) = 3/2.$

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

イロト イヨト イヨト イヨト

Examples of D-ratios

Example

Let $\psi : \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ be the rational map given in projective coordinates by $\psi(x, y, z) = (xz, y^2, z^2)$ and consider a hyperplane H containing the point of indeterminacy (1,0,0). After two blow-ups along points, we get a resolution of the indeterminacy and obtain

$$\pi_{\psi}^*\mathsf{H} = \mathsf{H}_{\mathsf{V}} + \mathsf{E}_1 + 2\mathsf{E}_2, \qquad \tilde{\psi}^*\mathsf{H} = 2\mathsf{H}_{\mathsf{V}} + \mathsf{E}_1 + 2\mathsf{E}_2.$$

Thus $r(\psi) = 2$.

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

イロト イヨト イヨト イヨト

D-ratios and pre-periodic points

Proposition

(Joey) Let $\varphi : \mathbb{P}^n \dashrightarrow \mathbb{P}^n$ be a rational map defined over the number field K. Suppose that the indeterminacy locus $I(\varphi)$ is contained in a hyperplane $H \subset \mathbb{P}^n$ and $u = \frac{r(\varphi)}{\deg(\varphi)} < 1$, then the set of pre-periodic points for the map φ , is a set of bounded height and therefore there are at most finitely many pre-periodic points for φ in K.

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

イロト イヨト イヨト イヨト

D-ratios and pre-periodic points

Proposition

(Joey) Let $\varphi : \mathbb{P}^n \dashrightarrow \mathbb{P}^n$ be a rational map defined over the number field K. Suppose that the indeterminacy locus $I(\varphi)$ is contained in a hyperplane $H \subset \mathbb{P}^n$ and $u = \frac{r(\varphi)}{\deg(\varphi)} < 1$, then the set of pre-periodic points for the map φ , is a set of bounded height and therefore there are at most finitely many pre-periodic points for φ in K.

Example

As observed before, $\psi(x, y, z) = (x^3 + yz^2, xz^2 + y^2z, z^3)$ has $r(\psi) = 3/2 < \deg(\varphi) = 3$ and therefore it has only finitely many pre-periodic points on any number field.

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

イロン イヨン イヨン イヨン

D-ratio: technical details

Definition

(Joey) The cone of \mathbb{A}^n -effective divisors is the cone

$$\mathbb{R}^{\geq 0}\mathsf{H}_{\mathsf{V}} + \mathbb{R}^{\geq 0}\mathsf{E}_{1} + \mathbb{R}^{\geq 0}\mathsf{E}_{2}\cdots + \mathbb{R}^{\geq 0}\mathsf{E}_{\mathsf{r}},$$

for a fixed basis $\{H_V, E_1, \ldots, E_r\}$ of $\mathsf{Pic}(\tilde{X}).$

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

イロト イヨト イヨト イヨト

D-ratio: technical details

Definition

(Joey) The cone of \mathbb{A}^n -effective divisors is the cone

$$\mathbb{R}^{\geq 0}\mathsf{H}_{\mathsf{V}} + \mathbb{R}^{\geq 0}\mathsf{E}_{1} + \mathbb{R}^{\geq 0}\mathsf{E}_{2}\cdots + \mathbb{R}^{\geq 0}\mathsf{E}_{\mathsf{r}},$$

for a fixed basis $\{H_V, E_1, \ldots, E_r\}$ of $\mathsf{Pic}(\tilde{X}).$

Remark

A divisor that is \mathbb{A}^n -effective is in particular effective and therefore the associated height h_D is ≥ 0 , wherever is defined.

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

イロト イヨト イヨト イヨト

Questions

Question

For maps on \mathbb{P}^2 , can we compute the coefficients a_i and b_i and therefore the D-ratio using intersection theory?

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

Questions

Question

For maps on \mathbb{P}^2 , can we compute the coefficients a_i and b_i and therefore the D-ratio using intersection theory?

Question

How to define D-ratio relative to maps on general projective varieties?. Do we have an analogous condition forcing a finite number of pre-periodic points?

Algebraically stable maps and dynamical degree Example of four-folds with involutions The D-ratio of a rational map

Questions

Question

For maps on \mathbb{P}^2 , can we compute the coefficients a_i and b_i and therefore the D-ratio using intersection theory?

Question

How to define D-ratio relative to maps on general projective varieties?. Do we have an analogous condition forcing a finite number of pre-periodic points?

Question

In the particular case of the family $\{X^{A,B}\}_{A,B}$. Can we use the results to study the orbits of points under the iteration of the three involutions σ_1, σ_2 and σ_3 ?