1 Matrices

As we have seen earlier, a matrix is a rectangular array of numbers, in general in m rows and n columns. The size of a matrix is given by the pair (m, n), we say that A is a $m \times n$ -matrix when it has m rows and n columns.

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix}$$

As we saw also before, matrices are a useful way to express systems of linear equations. For example:

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

represents the system:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ & \vdots \\ a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n = b_i \\ & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

with augmented matrix:

$\begin{pmatrix} a_{1,1} \\ a_{2,1} \end{pmatrix}$	$a_{1,2} \\ a_{2,2}$	 	$a_{1,n} \\ a_{2,n}$	$\begin{vmatrix} b_1 \\ b_2 \end{vmatrix}$
$\begin{bmatrix} \vdots \\ a_{m,1} \end{bmatrix}$	\vdots $a_{m,2}$	•	\vdots $a_{m,n}$	$\left \begin{array}{c} \vdots \\ b_m \end{array}\right $

Remark 1. It is important to understand that the entries (numbers) inside the matrix can be any real numbers, not need to be integers or even fractions. We could have for example:

$$A = \begin{pmatrix} \frac{2}{3} & -\pi & -2\\ -.33 & \frac{1}{2} & 1 \end{pmatrix} \quad \text{or} \quad B = \begin{pmatrix} 3 & -2 & e\\ -\frac{8}{5} & -7 & e^2\\ \sqrt{2} & \sqrt{3} & 0 \end{pmatrix}.$$

A matrix A with n rows and n columns is called a square matrix of order n, and the entries $a_{11}, a_{22}, ..., a_{nn}$ are said to be on the main diagonal of A. A square matrix of order n looks like

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix}$$

For example $A = \begin{pmatrix} 3 & -2 \\ 8 & -7 \end{pmatrix}$ is a square matrix of order 2 or a 2 × 2-matrix with diagonal elements $a_{1,1} = 3$ and $a_{2,2} = -7$. The identity matrix is the matrix of order n

$$I_n = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}_{n \times n}$$

Definition 2. (Equality - addition -subtraction) Two matrices are defined to be equal if they have the same size and their corresponding entries are equal. If A and B are matrices of the same size, then the sum A + B is the matrix obtained by adding the entries of B to the corresponding entries of A, and the difference A - B is the matrix obtained by subtracting the entries of B from the corresponding entries of A. Matrices of different sizes cannot be added or subtracted.

Definition 3. (Product by scalar) If A is a matrix and c is a real number, the product cA is the matrix obtained by multiplying each entry of the matrix A by c. The matrix cA is said to be a scalar multiple of A.

Definition 4. (Matrix multiplication) If A is an $m \times r$ -matrix and B is an $r \times n$ matrix, then the product AB is the $m \times n$ matrix whose entries are determined as follows: To find the entry in row i and column j of AB, single out row i from the matrix A and column j from the matrix B. Multiply the corresponding entries from the row and column together, and then add up the resulting products. In other words the entry c_{ij} in AB is the scalar product of the vectors formed by the *i*-th row of A and the *j*-column of B.

Example 5. Let
$$A = \begin{pmatrix} 3 & -2 & 1 \\ 8 & -7 & -3 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 6 \\ 2 & 3 \\ 1 & 1 \end{pmatrix}$. The matrix A is an 2 × 3-

matrix and B is a 3×2 -matrix, hence, we are allowed to do $A \cdot B$ and the result should be a 2×2 -matrix:

$$A \cdot B = \begin{pmatrix} 3 & -2 & 1 \\ 8 & -7 & -3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 6 \\ 2 & 3 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} * & * \\ * & * \end{pmatrix}$$

Actually we did the scalar product of the vectors

$$(3, -2, 1) \cdot (1, 2, 1) = 3(1) - 2(2) + 1(1) = 0 \qquad (3, -2, 1) \cdot (6, 3, 1) = 3(6) - 2(3) + 1(1) = 13$$
$$(8, -7, -3) \cdot (1, 2, 1) = 8(1) - 7(2) - 3(1) = 9 \qquad (8, -7, -3) \cdot (6, 3, 1) = 8(6) - 7(3) - 3(1) = 24$$
And the answer is
$$\begin{pmatrix} 0 & 13 \\ -9 & 24 \end{pmatrix}.$$

Matrix multiplication was already used in writing our system of linear equations. We

express the system using a matrix $A_{m \times n}$ and a vector of unknowns $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$ as a

 $n \times 1$ -matrix standing-up and did the operation $A \cdot \mathbf{x}$.

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix}_{m \times n} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}_{n \times 1} = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \\ \vdots \\ a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \end{pmatrix}_{m \times 1}$$

The system can be expressed in short by the equation $A\mathbf{x} = \mathbf{b}$, where both \mathbf{x} and \mathbf{b} are vectors in *n*-dimensional space \mathbb{R}^n and we choose to express them as standing-up $n \times 1$ -vectors to be able to do the product and have an equality.

Properties of the matrix multiplication or product of matrices:

- (1) $A \cdot (B+C) = A\dot{B} + A \cdot C.$
- (2) $A \cdot (B \cdot C) = (A \cdot B) \cdot C.$
- (3) For any square matrix $A_{n \times n}$ of order *n* we have $A \cdot I_n = I_n \cdot A = A$.

Remark 6. In general, given matrices A and B, is not always true that $A \cdot B = B \cdot A$. For example:

$$\begin{pmatrix} 3 & -2 \\ 6 & -7 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 3 & -2 \\ 6 & -7 \end{pmatrix} = \begin{pmatrix} 9 & -9 \\ 9 & -9 \end{pmatrix}$$

The product of matrices **is not a commutative operation**. Another example, when we take $A = \begin{pmatrix} 3 & -2 & 1 \\ 8 & -7 & -3 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 6 \\ 2 & 3 \\ 1 & 1 \end{pmatrix}$. The matrix A is an 2 × 3-matrix and

B is a 3×2 -matrix, hence, we are allowed to do $A \cdot B$ and the result should be a 2×2 -matrix:

$$A \cdot B = \begin{pmatrix} 3 & -2 & 1 \\ 8 & -7 & -3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 6 \\ 2 & 3 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 13 \\ -9 & 24 \end{pmatrix}.$$

On the other hand $B_{3\times 2} \cdot A_{2\times 3}$ should be a 3 × 3-matrix

$$B \cdot A = \begin{pmatrix} 1 & 6 \\ 2 & 3 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 3 & -2 & 1 \\ 8 & -7 & -3 \end{pmatrix} = \begin{pmatrix} 51 & -44 & -17 \\ 30 & -25 & -7 \\ 11 & -9 & -2 \end{pmatrix}.$$

Remark 7. The product of two non-zero matrices could multiply to give the zero matrix. For example:

$$\begin{pmatrix} 2 & 0 \\ 3 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ 7 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Definition 8. If A is any $m \times n$ matrix, then the transpose of A, denoted by A^T , is defined to be the $n \times m$ matrix that results by interchanging the rows and columns of A^T ; that is, the first column of A^T is the first row of A, the second column of A^T is the second row of A, and so forth.

Example 9. For
$$A = \begin{pmatrix} 3 & -2 & 1 \\ 8 & -7 & -3 \end{pmatrix}$$
, the transpose $A^T = \begin{pmatrix} 3 & 8 \\ -2 & -7 \\ 1 & -3 \end{pmatrix}$

Definition 10. If A is a square matrix, then the trace of A, denoted by tr(A), is defined to be the sum of the entries on the main diagonal of A. The trace of A is undefined if A is not a square matrix.

Example 11. For $A = \begin{pmatrix} 3 & -2 & 1 \\ 8 & -7 & -3 \end{pmatrix}$ we cannot do the trace, because it is not a square matrix. On the other hand, for $B = \begin{pmatrix} 3 & -2 \\ 8 & -7 \end{pmatrix}$, we can compute the trace as $\operatorname{tr}(B) = 3 - 7 = -4$.

Definition 12. If $A_{n \times n}$ is a square matrix, and if a matrix $B_{n \times n}$ of the same size can be found such that $A \cdot B = B \cdot A = I_n$, then A is said to be invertible (or nonsingular) and B is called an inverse of A. If no such matrix B can be found, then A is said to be singular. The inverse of A is denoted A^{-1} .

Example 13. For
$$A = \begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix}$$
 we can choose $B = \begin{pmatrix} 5 & -2 \\ -7 & 3 \end{pmatrix}$ and check $\begin{pmatrix} 5 & -2 \\ -7 & 3 \end{pmatrix} \cdot \begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix} \cdot \begin{pmatrix} 5 & -2 \\ -7 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Hence A is invertible and $A^{-1} = \begin{pmatrix} 5 & -2 \\ -7 & 3 \end{pmatrix}$.