BRONX COMMUNITY COLLEGE

 of the City University of New York
DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

MATH 06
Spring 2015

Third Exam
Day (2 Hours)

1. (12 points) Simplify the following expressions:
(a) $5 \sqrt{12}-7 \sqrt{27}+2 \sqrt{3}$
(b) $(3-\sqrt{2})^{2}$
(c) $32^{-3 / 5}$
(d) $\left(\frac{8 x^{7} y^{10}}{x y}\right)^{-1 / 3}$
(e) $(-3+5 i)(1+2 i)$
(f) $\frac{1+3 i}{2-3 i}$
2. (24 points) Simplify:
(a) $\frac{x^{2}-1}{x^{2}+2 x+1} \div \frac{x-1}{2 x^{2}-x-3}$
(a) $\frac{3 x+7}{x+5}+\frac{2 x+18}{x+5}$
(b) $\frac{a-b}{5}-\frac{31-4 b}{4}$
(b') $\frac{3 x}{x+5}-\frac{5 x}{x-3}$
(c) $\frac{3 x-7}{x^{2}-4}+\frac{2 x-18}{x^{2}-3 x+2}$
(c') $\frac{4 x^{2}-25}{x^{2}+x-12} \cdot \frac{2 x^{2}-6 x}{4 x^{2}-10 x}$
(d) $\frac{\frac{3}{x-4}-2}{1-\frac{4}{x-4}}$
(d') $\frac{\frac{1}{x-1}+1}{\frac{1}{x-1}-1}$
3. (12 points) Given the quadratic function $f(x)=3 x^{2}-6 x-1$.
(a) Find the y-intercept.
(b) Find the x-intercepts (in case of radicals use an approximate value for the graph).
(c) Find the vertex.
(d) Sketch the graph.
4. (5 points) Solve the equation: $\frac{5}{3 x-2}=\frac{3}{2 x+4}$.
5. (5 points) Solve quadratic equation: $3 x^{2}-7 x=3$.
6. (5 points) Solve and check: $\sqrt{8-x}=x+4$.
7. (5 points) Solve the equation $3^{2 x-1}=1 / 81$.
8. (10 points) Given the functions $f(x)=2^{x}$ and $g(x)=\log _{2}(x)$:
(a) Complete the table:

x	$f(x)$	x	$g(x)$
-3		$1 / 8$	
-2		$1 / 4$	
-1		$1 / 2$	
0		1	
1		2	
2		4	
3		8	

(b) Sketch the graph of f and g in the same axis of coordinates.
9. (8 points) Compute the x in each case by changing to exponential form or by applying properties of logarithms:
a) $\log _{2}(x)=5$,
b) $\log _{x}(3)=2$
c) $\log _{8}(4)=x$
d) $\log _{27}(1 / 9)=x$
10. (5 points) The height of a building is 77 meters and the angle from a point in the ground to the top of the building is 38°. What is the distance from the point in the ground to the top?
11. (5 points) A right angle is such that one of the legs is 3 inches and the opposite angle is 25°. What are the lengths of the other two sides?
12. (5 points) If an anle θ in the third quadrant has $\sin (\theta)=-3 / 5$. Find the value of $\cos (\theta)$ and $\tan (\theta)$.

