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Abstract. The present paper is an introduction to the dynamical
Manin-Mumford conjecture and an application of a theorem of
Ghioca and Tucker to obtain counterexamples on certain family of
Lattés maps.

1. Introduction

The language of algebraic varieties is developed to study problems
involving the solution set of a system of polynomial equations. An al-
gebraic variety is a topological space behaving locally like the zero set
of a system of polynomials in the affine space An. A projective variety
is an algebraic variety that can be embedded in the projective space
Pn for some n. The topology considered on an algebraic variety is the
Zariski topology that has subvarieties of X as irreducible closed sets.
The dimension of X is the maximum of all n such that we find a chain
of subvarieties Y0  Y1  ...  Yn = X.
Many number theoretic questions are naturally expressed as diophan-
tine problems. This means that the algebraic variety X is defined by
equations in a number field K. In the case of a projective variety it
means that X is defined by homogenous polynomials with coefficients
in K.
We are interested in studying finite maps X → X from a projective
algebraic variety to itself and defined over a number field K. More
specifically we want to understand the subvarieties of X that have a
finite forward orbit under the action of the map. For example for the
map x → x2 on P1

K , the points 0, ∞ and the roots of unity in K̄ have a
finite forward orbit. In this case, the set made as the union of {0,∞}
and the roots of unity, is dense for the Zariski topology in P1!
Suppose that Y  X is a subvariety of X the main question we would
like to analyze is:

Question 1.1. Can a subvariety Y  X be such that Y is not prepe-
riodic but contains a dense set of preperiodic points ?

2010 Mathematics Subject Classification. Primary: 37P55; Secondary: 37P05,
14K15, 14K12, 14G99.

1



2 JORGE PINEIRO

We will restrict ourselves to a special type of maps on X which will
be called polarized maps and will be introduce in the next section. This
question has a negative answer for varietiesX of dimension one because
a subvariety of dimension zero is just a point. On the other hand the
question is open for X = P2. To give this question a positive answer for
polarized maps in dimension two we will use projective varieties that
are easily presented as product of two varieties. More specifically we
will use the product of two varieties of dimension one called “elliptic
curves”: X = E × E and the product of two projective lines: X =
P1×P1. The subvariety Y used in both cases is the diagonal subvariety
and the maps to be defined in the next section are denoted by

([ω], [ω′]) : E × E → E × E and (fω, g
′
ω) : P1 × P1 → P1 × P1.

The ω, ω′ can be interpreted as elements in an order R in an imaginary
quadratic extension L = Q(

√
−D) of Q and we say that E admits

“complex multiplication” by ω, ω′. The maps fω, g
′
ω are in fact strongly

related to [ω], [ω′]. There is a natural projection π : E → P1 and the
maps fω, gω′ are called Lattés map associated to the maps [ω], [ω′] :
E → E. This means that we have commutative diagrams

E
[ω]−−−→ E E

[ω′]−−−→ E

π

y yπ π

y yπ

P1 fω−−−→ P1 P1
gω′−−−→ P1

The main results presented are, a theorem of Ghioca and Tucker and
an application of this theorem to certain family of Lattés maps:

Theorem 1.2. (Ghioca-Tucker) Let E be an elliptic curve with com-
plex multiplication defined over a number field K. Let R be an order
in an imaginary quadratic extension of Q such that there is an isomor-
phism ι : R −→ End(E) written as ι(ω) = [ω]. Suppose that ω, ω′ ∈ R
are such that |ω| = |ω′| > 1 and ω/ω′ is not a root of unity. Then ques-
tion 1.1 has a positive answer for the diagonal subvariety ∆ in E × E
under the action of ([ω], [ω′]).

Theorem 1.3. Let φ = (f, g) : P1 × P1 → P1 × P1, where f = fω
and g = gω̄ are Lattés maps associated respectively to multiplication by
ω, ω̄, (|ω| > 1) on an elliptic curve E with complex multiplication by an
order R in L = Q(

√
−D). Then question 1.1 has a positive answer for

the diagonal subvariety ∆′ ⊂ P1 × P1 under the action of (f, g), unless
we are in one of the following cases:

(i) ω = ±a+ ai with 0 ̸= a ∈ Z and D = 1,
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(ii) ω = a with 0 ̸= a ∈ Z,
(iii) ω = b

√
−D with 0 ̸= b ∈ Z,

(iv) ω = ±3b+b
√
−3

2
with 0 ̸= b ∈ Z and D = 3,

(v) ω = ±b+b
√
−3

2
with 0 ̸= b ∈ Z and D = 3.

The main ingredients of the proofs are the group properties of the
points on elliptic curves and the properties of roots of unity in quadratic
fields.

2. The dynamical Manin-Mumford conjecture

2.1. Arithmetic dynamics, elliptic curves and Lattés maps. Let
K be a number field. We want to consider projective algebraic varieties
X defined over K.

Definition 2.1. An arithmetic dynamical system φ : X → X over K
is a map from the algebraic variety X to itself also defined over K.

Is not easy to come up with non-trivial examples of self-maps, be-
cause in most cases they are consequence of deeper geometric prop-
erties. Consider for instance a plane curve with equation E : zy2 =
G(x, z) where G ∈ K[x, z] is a homogeneous and irreducible polynomial
of degree 3. These algebraic objects are called elliptic curves and their
arithmetic properties have been intensively studied by many authors
([Sil86], [Sil94]). The distinctive property of elliptic curves defined over
K is that for any extension L/K, points on E(L) have a group struc-
ture, that is, we can define a K-morphism + : E × E → E, a point
P0 = (0, 1, 0) ∈ E(K) and an involution [−1](x, y, z) = (x,−y, z) mak-
ing (E(L),+, P0) into a group. In particular we can define K-maps

[n] : E → E,

for all n > 1.
To illustrate the complexity of these self-maps we take the elliptic curve
E : zy2 = z3G(x/z, 1) with G ∈ K[x] of degree 3, without repeated
roots and P = (x : y : 1) ∈ E with y ̸= 0. Under this conditions,
multiplication by [2] is given by formulaes:

[2](x, y) =

(
G′(x)2 − 8xG(x)

4G(x)
,
G′(x)3 − 12xG(x)G′(x) + 8G2(x)

8G(x)y

)
.

One thing to notice is that the x-component of the map depends only
on x, so this map will descend to a map on P1. This fact is not specific
to multiplication by 2. In general, maps [n] : E → E for n ∈ Z will
give rise to maps φn : P1 → P1 when we mod out by the involution
[−1] : E → E. In some cases we have maps [ω] : E → E, where
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ω ̸∈ Z can be interprete as an element in the ring of integers of an
imaginary quadratic field, and the theory of elliptic functions produces
maps φω : P1 → P1 associated to them. If π : E → P1 represents the
(2 : 1)-projection associated to the hyperelliptic involution on E we
have the diagram

E
[ω]−−−→ E

π

y yπ

P1 φω−−−→ P1

Definition 2.2. An elliptic curve E is said to have complex multi-
plication if Z  End(E) = Order in an imaginary quadratic number
field.

For example the elliptic curve E1 with affine equation y2 = x3 + x
admits the automorphism [i](x, y) = (−x, iy) and End(E) = Z+ Zi.

Definition 2.3. The maps φω are called Lattés maps associated to the
maps [ω] : E → E where in general ω can be seen as an element in an
order in an imaginary quadratic field.

2.2. Preperiodic subvarieties and preperiodic points. In this
section we present the idea of subvarieties with a finite forward orbit.

Definition 2.4. Let φ : X → X be an arithmetic dynamical system
defined over K. A subvariety Y of X is said to be preperiodic if there
exist natural numbers m and k > 0 such that φm+k(Y ) = φm(Y ). The
set Prepφ(X) is defined to be the set of all preperiodic points of X(K̄)
under the action of φ.

We explain the concepts of preperiodic points and preperiodic sub-
varieties in a special type of variety that generalizes elliptic curves:
Abelian varieties. Abelian varieties A are the higher dimensional anal-
ogous of elliptic curves. They are connected complete algebraic groups
and similarly to elliptic curves we can define self-maps [n] : A → A for
n > 1. The preperiodic points for any map [n] : A → A are just the
torsion points A(K̄)tors. On the other hand we can find examples of
preperiodic subvarieties as translated P +B, where P is torsion and B
is Abelian subvariety.
The torsion points for Abelian varieties (and Abelian subvarieties) are
always Zariski dense. We have the following theorem of Raynaud char-
acterizing subvarieties Y  A with Zariski dense set of preperiodic
points.
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Theorem 2.5. (Raynaud) Let A be an Abelian variety. If Y  A
is a subvariety of A and contains a Zariski dense subset of preperiodic
points then Y = P+B, where P is torsion and B is Abelian subvariety.

Proof. This is the main result in [Ray83]. In the case that Y does
not contain a translated of an Abelian subvariety, the finiteness of the
torsion points in Y is established. In this case the idea of the proof is
as follows: choose p prime such that the p-primary torsion contained in
X+a is finite and bounded independent of a ∈ A. The other part of the
torsion, prime to p, can be proved to be finite by p-adic methods. �

As a consequence of this result, subvarieties Y  A containing a
Zariski dense set of preperiodic points will be also preperiodic.

2.3. Pic, ampleness and polarization. More than the group prop-
erties of Abelian varieties, many results associated to dynamics are
consequence of certain equation in the Picard group of the Variety.
Any algebraic variety X, as ringed space, has (functorially) associated
an Abelian group Pic(X). The group Pic(X) is the group of locally
free sheafs of rank one or invertible sheafs on X, with tensor product
as group operation. Elements of Pic(X) are also called line bundles
on X and any algebraic dynamical system φ : X → X determines by
functoriality a group homomorphism φ∗ : Pic(X) → Pic(X).
On Abelian varieties there exist this special type of line bundles L ∈
Pic(A), called symmetric line bundles, that satisfy [−1]∗L = L. As a
consequence of Mumford formula (cor. A.7.2.5 in [HS00]), symmetric

line bundles on A satisfy a relation of the form [n]∗L = L[n2] for all n,
that is, they represent eigenvectors associated to eigenvalues n2 for all
n and in particular for n > 1. A line bundle L satisfying this equation
is what constitute a polarization for the system (A, [n]) for n > 1.
Now let’s see the notion of ampleness, treated for example in A.3.1 and
A.3.2 of [HS00]. A system of sections si ∈ Γ(X,L), i = 0..r determines
a rational map ϕL : X 99K Pr. If for some natural m > 0, the map
ϕLm : X 99K Pr becomes an isomorphic embedding of X onto its image
we say that L is ample. It is not hard to find ample and symmetric line
bundles on an Abelian variety A, for example on an elliptic curve E we
have the line bundle O(P +[−1]P ) associated to the divisor P +[−1]P .
In this sense, the dynamics (A, [n]) on Abelian varieties always admit
a polarization by an ample line bundle.

Definition 2.6. An arithmetic dynamical system φ : X −→ X is said
to have a polarization if there exists an ample line bundle L on X such
that φ∗L = L⊗α for some α > 1. A polarized dynamical system will be
denoted by (X,φ,L, α).
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Another example of polarized dynamical system is given by maps
φ = (p0 : ... : pn) : Pn → Pn for homogeneous polynomials pi ∈
K[x0, ..., xn] of the same degree d > 1 and the ample line bundle
L = O(1) associated to hyperplanes. In this case the polarization is
given by the equation φ∗O(1) = O(d) = O(1)d. To describe the prepe-
riodic points and preperiodic subvarieties in this situation is in general
complicated. The simplest case φm(x0, ..., xn) = (xm

0 , ..., x
m
n ),m ̸= ±1

represents the multiplicative group analogous of Abelian varieties and
we have that preperiodic points are points with coordinates xi equal to
zero or to a root of unity.
From now on we always work with polarized dynamical systems. Mo-
tivated by the way preperiodic points are related to preperiodic subva-
rieties on Abelian varieties, we present the Manin-Mumford conjecture
for polarized dynamical systems.

Conjecture 2.7. (Arithmetic Dynamical Manin-Mumford) Suppose
that (X,φ,L, α) is a polarized dynamical system defined over K. A
subvariety Y of X is preperiodic if and only if Y ∩ Prepφ(X)(K̄) is

Zariski dense in Y (K̄).

When we have a preperiodic subvariety Y , our system (X,φ,L, α)
can be restricted to have a dynamical system (φm(Y ), φk,L) and we
will get a Zariski dense set of preperiodic (even periodic) points by
theorem 5.1 in [Fak03]. So what the conjecture is actually saying that
being preperiodic as subvariety is the only way to have a Zariski dense
of preperiodic points.

2.4. Counterexamples to Manin-Mumford. We begin this section
by studying the product of two polarized dynamical systems.

Proposition 2.8. Suppose that we have two polarized dynamical sys-
tems (X,φ,L, α) and (X ′, φ′,L′, α), then we have a polarized dynamical
system also on the product variety, that is (X×X ′, φ×φ′, p∗1L⊗p∗2L′, α).

Proof. We compute the action of the product of maps on p∗1L ⊗ p∗2L′,

(φ× φ′)∗(p∗1L ⊗ p∗2L′) = (φ× φ′)∗(p∗1L)⊗ (φ× φ′)∗(p∗2L′)

= (φ× φ′ ◦ p1)∗L ⊗ (φ× φ′ ◦ p2)∗L′

= (p1 ◦ φ)∗(L)⊗ (p2 ◦ φ′)∗(L′)

= p∗1φ
∗L ⊗ p∗2φ

′∗L′

= p∗1Lα ⊗ p∗2L′α

= (p∗1L ⊗ p∗2L′)α

So we have a polarization on the new system. �



MANIN-MUMFORD 7

The following theorem in [GT09] provides a family of counterexam-
ples to Conjecture 2.7 for the diagonal subvariety ∆ on the product
E × E, where E is an elliptic curve with complex multiplication.

Theorem 2.9. (Ghioca-Tucker) Let E be an elliptic curve with com-
plex multiplication defined over a number field K. Let R be an order
in an imaginary quadratic extension of Q such that there is an isomor-
phism ι : R −→ End(E) written as ι(ω) = [ω]. Suppose that ω, ω′ ∈ R
are such that |ω| = |ω′| > 1 and ω/ω′ is not a root of unity. Then
Conjecture 2.7 fails for the diagonal subvariety ∆ in E × E under the
action of ([ω], [ω′]).

Proof. Suppose that ([ω]n+k, [ω′]n+k)(∆) = ([ω]n, [ω′]n)(∆) for some
n, k > 0. Consider a non-torsion point P ∈ E, then there exist Q ∈ E
also non-torsion such that ([ω]n+k, [ω′]n+k)(P, P ) = ([ω]n, [ω′]n)(Q,Q).
But then [ω]n+k(P ) = [ω]n(Q) and [ω′]n+k(P ) = [ω′]n(Q) or equiva-
lently [ω]n([ω]k(P ) − Q) = 0 and [ω′]n([ω′]k(P ) − Q) = 0. These last
two equations are saying that there are torsion points P1, P2 such that
[ω]k(P )−Q = P1 and [ω′]k(P )−Q = P2 and therefore

[ω]k(P )− [ω′]k(P ) = ([ω]k − [ω′]k)(P )

will also be a torsion point, and that cannot be for P non-torsion
unless [ω]k − [ω′]k = 0 or ω/ω′ is a root of unity. On the other hand
the system (E, ([ω], [ω′])) is polarized after proposition 2.8 whenever
deg([ω]) = |ω| = |ω′| = deg([ω′]) > 1 and ∆ contains infinitely many
preperiodic points, namely all points (P, P ) with P ∈ E torsion point.
This is proving that Conjecture 2.7 fails for the diagonal subvariety ∆
in E × E under the action of ([ω], [ω′]). �

Remark 2.10. Previous theorem gives rise to many counterexamples.
For instant, take any ω such that |ω| > 1 and ω/ω is not root of unity,
and let ω′ = ω. See later lemma 2.12.

Corollary 2.11. Let φ = (f, g) : P1×P1 → P1×P1, where f = fω and
g = gω′ are Lattés maps associated respectively to multiplication by ω, ω′

on an elliptic curve E with complex multiplication by R as in previous
theorem. Suppose also that ω, ω′ ∈ R are such that |ω| = |ω′| > 1 and
ω/ω′ is not a root of unity. Then, conjecture 2.7 fails for the diagonal
subvariety ∆′ ⊂ P1 × P1 under the action of (f, g).

Proof. Suppose that the elliptic curve E admits multiplication by ω, ω′

and this gives rise to Lattés maps fω, gω′ . We have a commutative
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diagram

∆ ⊂ E × E
(ω,ω′)−−−→ E × E

(π,π)

y (π,π)

y
∆′ ⊂ P1 × P1 (fω ,gω′ )−−−−→ P1 × P1

and a line bundle L0 = p∗1O(1)⊗ p∗2O(1) on P1 × P1. If we consider
the polarized systems

S ′ = (P1 × P1, fω × gω′ ,L0, |ω|) S = (E × E, ω × ω′, (π, π)∗L0, |ω|),
a subvariety Y  E × E is a preperiodic for S if and only if the
projection Y ′ = (π, π)(Y ) is preperiodic for S ′. �
Lemma 2.12. Suppose that ω, ω̄ ∈ R, where R is an order in an
imaginary quadratic extension L = Q(

√
−D) with D ∈ Z squarefree.

Then the fact that ω/ω̄ is a root of unity is equivalent to one of the
following cases:

(i) ω = ±a+ ai with 0 ̸= a ∈ Z and D = 1

(ii) ω = a with 0 ̸= a ∈ Z,
(iii) ω = b

√
−D with 0 ̸= b ∈ Z,

(iv) ω =
±3b+ b

√
−3

2
with 0 ̸= b ∈ Z and D = 3,

(v) ω =
±b+ b

√
−3

2
with 0 ̸= b ∈ Z and D = 3.

Proof. Elements in R are integers in L and therefore written as

ω = a+ b
√
−D or ω = a/2 + b

√
−D/2 2 | a− b

depending on −D ≡ 2, 3 mod (4) or −D ≡ 1 mod (4). In any case if
ω/ω′ is a root of unity then

ℜ(ω/ω̄) = a2 − b2D

a2 + b2D
= cos(2π/n)

for some natural n > 0.
The fact that exp(2πi/n) generates the n-th cyclotomic field means
that, for n > 2, the degree of the field extensions

[Q(exp(2πi/n) : Q] = ϕ(n) [Q(cos(2π/n)) : Q] = ϕ(n)/2.

As a consequence, cos(2π/n) is only rational if n = {1, 2, 3, 4, 6}, in
which cases cos(2π/n) takes the values {1,−1,−1/2, 0, 1/2} respec-
tively. So, we have the following possibilities for ω,D:
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i)
a2 − b2D

a2 + b2D
= 0 which forces a2 − b2D − 0 and therefore we get

D = 1, a = ∓b, ω = ±a+ ai.

ii)
a2 − b2D

a2 + b2D
= 1 which forces 2b2D = 0 and therefore we get

b = 0, ω = a.

iii)
a2 − b2D

a2 + b2D
= −1 which forces 2a2 = 0 and therefore we get

a = 0, ω = b
√
−D.

iv)
a2 − b2D

a2 + b2D
= 1

2
which forces a2 = 3Db2 and therefore we get

D = 3, a = ±3b, ω =
±3b+ b

√
−3

2
.

v)
a2 − b2D

a2 + b2D
= −1

2
which forces 3a2 = Db2 and therefore we get

D = 3, a = ±b ω =
±b+ b

√
−3

2
.

Which proves one direction. In the other direction the cases will give
ℜ(ω/ω̄) = 1,−1, 0, 1/2,−1/2 which mean that ω/ω̄ is in fact a root of
unity. �

Theorem 2.13. Let φ = (f, g) : P1 × P1 → P1 × P1, where f = fω
and g = gω̄ are Lattés maps associated respectively to multiplication by
ω, ω̄, (|ω| > 1) on an elliptic curve E with complex multiplication by an
order R in L = Q(

√
−D). Then question 1.1 has a positive answer for

the diagonal subvariety ∆′ ⊂ P1 × P1 under the action of (f, g), unless
we are in one of the following cases:

(i) ω = ±a+ ai with 0 ̸= a ∈ Z and D = 1,

(ii) ω = a with 0 ̸= a ∈ Z,
(iii) ω = b

√
−D with 0 ̸= b ∈ Z,

(iv) ω =
±3b+ b

√
−3

2
with 0 ̸= b ∈ Z and D = 3,

(v) ω =
±b+ b

√
−3

2
with 0 ̸= b ∈ Z and D = 3.

Proof. This is an application of lemma 2.12 and corollary 2.11. �
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2.5. Further inquiries. The following question is related to the ques-
tion stated in the introduction of the paper. It only pays attention to
the dimension of the varieties X and Y .

Question 2.14. Consider the pair of natural numbers (n,m), n > m.
Can we have a polarized dynamics (X,φ,L, .), where X has dimension
n and Y  X is a subvariety of dimension m which is not a preperiodic
subvariety of X but contains a Zariski dense set of preperiodic points?

The discussion on this paper provides a possitive answer for the pair
(2, 1). We can use analogous techniques for pairs (n, 1). Consider
the diagonal subvariety ∆ inside the n-th fold E × ... × E, where E
is an elliptic curve with complex multiplication by an order R. The
subvariety ∆ will not be preperiodic for the action of the polarized
map [ω1]× ...× [ωn] where ωi ∈ R are of the same norm with at least
one quotient ωi/ωj that is not a root of unity. On the other hand
∆ contains infinitely many points of the form (x, x, ..., x) where x is
torsion.

Question 2.15. Can we find an example for (n, 2) for some n ≥ 3?

Question 2.16. What is the answer for the projective plane X = P2?
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