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Abstract. We use canonical metrics on Q-bundles to have an
explicit formula for the local canonical height associated to several
maps.

1. introduction

The theory of height functions lies at the center of the solution of
many important problems in Diophantine Geometry. With the intro-
duction of a hermitian structure on line bundles on arithmetic surfaces
[1],[11], a geometric content was given to the computation of heights
as intersection numbers. Later on, a special type of heights were intro-
duced by Call and Silverman [2] to study dynamics: canonical heights
associated to self-maps. These canonical heights were obtained as lim-
its of Weil heights, making use of the Weil height machine [7] and
required the map to be ”polarized” (c.f. section 2.3) by a line bundle.
The theory of adelic metrized line bundles developed by Shou-Wu in
[12], allow us to interpret canonical heights of morphisms polarized by
Q-bundles as (limits of) intersection numbers. In [8], Kawaguchi gen-
eralizes the work of Shou-Wu on adelic metrics and adelic intersection
to dynamical systems of several maps, dealing with, heights of points,
heights of subvarieties, as well as the decomposition, in the normal
case, of canonical heights into sum of local canonical heights in the
spirit of [9].
Let K be a number field with set of places MK . We consider a projec-
tive varietyX defined overK and a system of k maps φi : X −→ X also
defined over K. We study the notion of canonical metrics {∥.∥v}v∈MK

for a system of several maps {φ1, . . . , φk} on a line bundle L, satisfy-
ing a polarization property

⊗k
i=1 φ

∗
iL ∼= Ld, for some rational number

d > k. With the use of canonical metrics we can obtain a closed ex-
pression

λ̂L,{φ1,...,φk}(P, v) = − log ∥s(P )∥v,{φ1,...,φk},
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for the local canonical height λ̂L,{φ1,...,φk}, whose existence we know
from section 4 of [8]. For a clear survey in Diophantine Geometry
containing an approach to canonical metrics using analytic spaces we
refer to [5].

2. Metrics on line bundles

It was an invention of Arakelov [1] to add places at infinity to the non-
archimedean places of a number field and consider hermitian metrics
on line bundles on the associated complex varieties.

2.1. Metrics on line bundles. Let X be a projective algebraic vari-
ety defined over a field K, together with an absolute value |.| defined
over all residue fields K(x) for x ∈ X. A metric ∥.∥ on a line bun-
dle L ∈ Pic(X) is a collection of metrics ∥.∥x on the fibres Lx, vary-
ing continuously on x, in such a way that for any open set U ⊂ X
and s ∈ Γ(U,L), the continuous function ∥s∥U : U → R+ satisfies
∥fs∥ = |f |∥s∥ for f ∈ OX(U).

Example 2.1. For X a projective variety defined over over a number
field K and σ : K ↪→ C a place at infinity, we can take the norm
|x|σ = |σ(x)| inK and put hermitian continuous metrics on line bundles
L over Cσ. The datum (L, ∥.∥σ), where σ is moving in places at infinity
is called a hermitian line bundle.

Let K be a complete ultrametric field which is the field of fractions
of a complete discrete valuation ring K0. Let X be a projective variety
over K and L a line bundle on X. Given a K0-scheme X and a line
bundle L̃ on X , we say that (X , L̃) is a model of (X,Le) for some
power e > 0, if the generic fibre X ×Spec(K0) Spec(K) ∼= X and L̃|X ∼=
L̃ ⊗ K ∼= Le. A model (X , L̃) defines a metric on L in the following
way: Let εU : OX (U) ∼= L̃|U be a local frame for L̃|U , then every
non-zero section sU : U → L̃|U will be written as sU = εUfU for some
f ∈ OX (U). When we restrict ourself to U = U × SpecK, we get
εU : OX(U) ∼= Le|U and for any section sU of L|U we could write
seU = εUfU . We declare ∥sU∥L̃ = |fU |1/e or equivalently ∥εU∥L̃ = 1 on
U . A metric so defined is called algebraic.

Example 2.2. Let K be a number field and v a non-archimedean place.
Let X be a projective variety defined over the ultrametric complete
field Kv and L ∈ Pic(X) a line bundle on X. A model (X , L̃) of
(X,Le) over the ring of integers of Kv will define a metric ∥.∥L̃,v on L.
If we take L̃ = (L̃, ∥.∥σ) to be a hermitian line bundle, we will have
metrics at all places v ∈ MK .
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Adelic metrics for line bundles L ∈ Pic(X) were introduced by S.
Zhang in [12] to add a little more flexibility in choosing our metrics at
finitely many places:

Definition 2.3. Let X be defined over a number field K. An adelic
metric ∥.∥ for a line bundle L ∈ Pic(X) is a collection of metrics ∥.∥ =
(∥.∥v)v∈MK

, where v runs over the places of K; in such a way that for all
but finitely many v, the metric is induced by the same OK-model. We
say that a sequence ∥.∥n of adelic metrics on L converges to an adelic
metric ∥.∥∞ if for all but finitely many places log(∥.∥v,n/∥.∥v,∞) = 0
and log(∥.∥v,n/∥.∥v,∞) → 0 uniformly on X(K) for all v ∈ MK.

2.2. Canonical metric. Canonical metrics are special types of met-
rics associated to dynamical systems. A dynamical system of one map
on a projective variety X is a self-map φ : X −→ X. A dynamical
system is said to be polarized by an ample line bundle L ∈ Pic(X) if
φ∗L ∼= Ld for some real number d > 1. We denote a polarized dynam-
ical system by (X,φ,L, d). In the case that d > 1 is a natural number,
in section 2 of [12] a sequence of models (Xn, L̃n) for (X,Len) is de-
fined in such a way that the induced adelic metrics ∥.∥n,v converge to
an adelic metric ∥.∥φ,v. The metric ∥.∥φ,v is called the canonical metric
on L. It is the only metric that makes the isomorphism φ∗L ∼= Ld into
an isometry.

2.3. Canonical height. Let X a projective algebraic variety defined
over a number field K. A polarized dynamical system (X,φ,L, d) over
K, has associated a unique function ĥφ : X(K̄) −→ R+, which satisfies
the properties:

(1) ĥφ(φ(P )) = dĥφ(P ) for all P ∈ X(K̄),

(2) ĥφ(P ) ≥ 0 for all P ∈ X(K̄),

(3) ĥφ(P ) = 0 if and only if the forward orbit of P by φ is finite.

(4) There exist C > 0, such that |hL(P ) − ĥφ(P )| < C for all
P ∈ X(K̄).

The function ĥφ is called the canonical height function associated to
the system (X,φ,L, d). A proof of the existence and uniqueness was
first established in [2]. A presentation of canonical heights in terms of
adelic metrics and intersection numbers can be found in [12].

3. Canonical height for several morphisms

As a generalization of canonical heights associated to polarized dy-
namical systems (X,φ,L, d) of one map [2], [12], [7], the work of
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Kawaguchi in [8] showed the existence of canonical height functions
associated to polarized dynamical systems of several maps.

Definition 3.1. Let K be a number field. Let X be a projective variety
defined over K and φi : X −→ X(i = 1, . . . , k) be morphisms over K.
We say that the system (X, {φ1, . . . , φk},L, d) is a polarized dynamical
system of k morphisms over K if there exist an ample R-line bundle L
on Pic(X)⊗ R such that

⊗k
i=1 φ

∗
iL ∼= Ld for some d > k.

Let’s denote by C(P ) = {P} ∪ {φi1 ◦ φi2 ◦ · · · ◦ φil(P ) | l > 0, 1 ≤
i1 ≤ i2 ≤ · · · ≤ il ≤ k} the forward orbit of a point P ∈ K under the
maps φ1, . . . , φk. The following theorem is a combination of theorems
1.2.1 and 1.3.1 in [8]. It establishes the existence of a canonical height
function for varieties with a family of morphisms.

Theorem 3.2. Let (X, {φ1, ..., φk},L, d) be a polarized dynamical sys-
tem of k morphisms over a number field K. Then there exist a real
valued function

ĥL,{φ1,...,φk} : X(K̄) −→ R
with the following properties

(1)
∑k

i=1 ĥL,{φ1,...,φk}(φi(P )) = dĥL,{φ1,...,φk}(P ) for all P ∈ X(K̄),

(2) ĥL,{φ1,...,φk}(P ) ≥ 0 for all P ∈ X(K̄),

(3) ĥL,{φ1,...,φk}(P ) = 0 if and only if C(P ) is finite.

The idea of the proof [8] is similar to the case of one morphism. The
canonical height is obtained as limit of a sequence, whose convergence
is proven using a contracting map type argument due to Tate. The
properties of the canonical height are consequence of the Weil height
machine developed for example in [7].

Example 3.3. The main illustration of height associated to several maps
is the dynamics of two automorphisms on the family of K3 surfaces
studied by Silverman in [10].

Consider the family of K3 surfaces Sa,b ⊂ P2 × P2 determined by the
two equations with coefficients in a number field K,

3∑
i,j=1

ai,jxiyj = 0
3∑

i,j,k,l=1

bi,j,k,lxixkyjyl = 0.

The projections p1, p2 : Sa,b −→ P2 represents double coverings of P2
K

and determine morphisms σ1, σ2 : Sa,b −→ Sa,b in a generic members
of the family Sa,b. If we take H ∈ Pic(P2) a hyperplane section and
Dj = p∗j(H) ∈ Pic(Sa,b) for i = 1, 2; the ample divisor D = D1 + D2
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will give the polarization σ∗
1D+σ∗

2D ∼ 4D associated to σ1, σ2 and, by

theorem 3.2, we will get a canonical height ĥD,σ1,σ2 : S(K̄) −→ R+.

3.1. Local canonical heights associated to several morphisms.
One valuable tool to compute canonical heights will be, to express the
height as the sum of local components. This motivates the definition
of local canonical heights. In this section we are following [8] and
ultimately Chapter 10 of [9]. Suppose that X is a normal projective
variety defined over a number field K and U ⊂ X is a non-empty open
set. Let us denote by MK the set of absolute values on K and by
M = MK̄ , the set of absolute values on K̄ extending those of K. A
function λ : U(K̄) × M −→ R is called MK-continuous if, for every
v ∈ MK , λv : U(K̄) −→ R, P 7→ λ(P, v) is continuous in the v-adic
topology. A function γ : MK −→ R is called MK-constant if γ(v) = 0
for all but finitely many v ∈ MK . For v′ ∈ M extending v ∈ MK ,
we set γ(v′) = γ(v). In this way γ is extended to a function on M ,
which is also said to be MK-constant. A function α : U(K̄)×M −→ R
is called MK-bounded if there is a MK-constant function γ such that
|α(P, v)| ≤ γ(v) for all (P, v) ∈ U(K̄) ×M . With these definitions in
our hands we can introduce local height functions:

Definition 3.4. Let D ∈ Div(X)⊗R. A function λD : X\Supp(D)(K̄)×
M −→ R is a said to be a local height associated to D if there is an
affine covering {Ui} of X, a Cartier divisor {(Ui, fi)} representing D
such that the function α(P, v) = λD(P, v) − v ◦ fi(P ) is MK-bounded
and MK-continuous for P ∈ (Ui \ Supp(D))(K̄) and v ∈ M .

Example 3.5. Let L ∈ Pic(X) be a line bundle on X and ∥.∥ =
{∥.∥v, v ∈ MK} an adelic metric on L. Take a section s ∈ Γ(X,L)
and consider the function

α(P, v) = − log ∥s(P )∥v − v ◦ fi(P ) = − log ∥εUi
(P )∥v

for a local frame εUi
: OX(Ui) ∼= L|Ui. By the definition of the adelic

metric induced by a model, we will have ∥εUi
(P )∥ = 1 for all P ∈ Ui and

almost all v ∈ MK , therefore α is a MK-bounded and MK-continuous
and λD(P, v) = − log ∥s(P )∥v is a local height associated toD = div(s).

The following theorem is a combination of theorem 4.2.1 and 4.3.1
in [8]. It states the existence and properties of the local canonical
height functions associated to systems of morphisms on varieties over
number fields. The proof however will be constructive using the theory
of canonical metrics on line bundles.

Theorem 3.6. Let X be a normal projective variety and consider the
polarized system (X, {φ1, ..., φk},L, d) of k morphisms over a number
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field K. Suppose that E is a divisor on X associated to the line bundle
L such that φi(X) is not contained in Supp(E) and φ∗

1E+ · · ·+φ∗
kE =

dE + div(f) for some rational function f ∈ K̄(X)∗ ⊗ R. Then there
exist a unique function

λ̂L,{φ1,...,φk} : {X \ Supp(E)(K̄)} ×M −→ R

with the properties:

(1) λ̂L,{φ1,...,φk} is a Weil local height associated to E.
(2) for any P ∈ X \ (Supp(E) ∪ Supp(φ∗

1E) ∪ · · · ∪ Supp(φ∗
kE))

and for all v ∈ M ,

k∑
i=1

λ̂L,{φ1,...,φk}(φi(P ), v) = dλ̂L,{φ1,...,φk}(P, v) + v(f(P )).

(3) For L an extension of K, w and extension of v and P ∈ X(L),
we have the decomposition:

ĥL,{φ1,...,φk}(P ) =
1

[L : K]

∑
w∈ML

[Lw : Kv]λ̂L,{φ1,...,φk}(P,w).

We would like to prove the theorem by finding explicitly local canon-
ical heights functions in terms of canonical metrics. For that reason we
start with stating and proving a local lemma for real line bundles that
is a generalization of theorem 2.2 in [12] in the same way Kawaguchi
does it for places at infinity in Theorem 3.1.1 of [8].

Lemma 3.7. Let (X, {φ1, ..., φk},L, d) be a polarized dynamical system
over an algebraically closed valuation field K. Suppose that each of
the φi : X −→ X is surjective and we have fixed an isomorphism
Φ : Ld ≃

⊗k
i=1 φ

∗
iL. Suppose that we have a bounded and continuous

metric ∥.∥0 in L. Then the metrics ∥.∥n on L defined inductively by

(3.7.1) ∥.∥dn = Φ∗(φ∗
1∥.∥n−1 . . . φ

∗
k∥.∥n−1)

converges uniformly to a metric on L, which we denote by ∥.∥{φ1,...,φk}.
The metric ∥.∥{φ1,...,φk} is the unique metric with the property

∥.∥d{φ1,...,φk} = Φ∗(φ∗
1∥.∥{φ1,...,φk} . . . φ

∗
k∥.∥{φ1,...,φk})

and will be called the canonical metric associated to L and the maps
φ1, . . . , φk.
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Proof. The idea of the proof is taken from theorem (2.2) in [12]. Denote

by h the bounded and continuous function log ∥.∥1
∥.∥0 on X(K). Then

log ∥.∥n = (
k∑

i=1

1

d
Φ∗φ∗

i )
n−1 log ∥.∥1

= (
k∑

i=1

1

d
Φ∗φ∗

i )
n−1(h+ log ∥.∥0)

= (
k∑

i=1

1

d
Φ∗φ∗

i )
n−1h+

k∑
i=1

(
1

d
Φ∗φ∗

i )
n−1 log ∥.∥0

= (
k∑

i=1

1

d
Φ∗φ∗

i )
n−1h+ log ∥.∥n−1

Using induction we get log ∥.∥n =
∑n−1

j=0 (
∑k

i=1
1
d
Φ∗φ∗

i )
jh + log ∥.∥0

and because ∥(
∑k

i=1
1
d
Φ∗φ∗

i )
jh∥sup ≤ (k

d
)j∥h∥sup, we will get that the

series
∑n−1

j=0 (
∑k

i=1
1
d
Φ∗φ∗

i )
jh converges absolutely and uniformly to a

bounded and continuous function hφ1...φk
and the metric ∥.∥n con-

verges uniformly to the continuous and bounded metric ∥.∥{φ1,...,φk} =
∥.∥0 exp(hφ1...φk

). The invariant property follows when we let the op-

erator (
∑k

i=1
1
d
Φ∗φ∗

i ) act on log ∥.∥{φ1,...,φk}. On the other hand if
there are two different metrics ∥.∥{φ1,...,φk} and ∥.∥′{φ1,...,φk} satisfying
the functional equation 3.7.1, the continuous and bounded function
g = log(∥.∥{φ1,...,φk}/∥.∥′{φ1,...,φk}) will satisfy the equation (1

d
Φ∗φ∗

i )g = g
and therefore it will be identically zero. �

Following section 2.2 of [8] we go back now to the global situation,
where we have a polarized dynamical system (X, {φ1, ..., φk},L, d) of
k surjective morphisms over a number field K and we have fixed an
isomorphism Φ : Ld ≃

⊗k
i=1 φ

∗
iL. Since X is a projective variety and

L is ample we can build a model (X , L̃) of some power (X,Le) over
Spec(OK), with L̃ hermitian line bundle. This induces an adelic metric
∥.∥0 on L. There is an open U ⊂ Spec(OK) such that the maps extend

to φi : X̃U −→ X̃U and ΦU : Ld
U ≃

⊗k
i=1 φ

∗
iLU in Pic(X̃U). It follows

that for v ∈ U

∥.∥d0,v = Φ∗(φ∗
1∥.∥0,v . . . φ∗

k∥.∥0,v)

Let’s define the normalization φ̃i : X̃ i −→ X̃ of the composition of
morphisms φi : X̃U −→ X̃U ↪→ X̃. Let X̃1 be the Zariski closure of

X̃U
∆−→ X̃U ×OK

· · · ×OK
X̃U ↪→ X̃1 ×OK

· · · ×OK
X̃k
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where ∆ is the diagonal map. Let pi : X̃
1 ×OK

· · · ×OK
X̃k −→ X̃ i

denote the projection onto the i-th factor. We can build a new model
(X̃1, L̃1) of (X,Le) when we put

L̃1 = [((φ̃1 ◦ p1)∗L̃ ⊗ · · · ⊗ (φ̃k ◦ pk)∗L̃))]1/d.

This new model induces an adelic metric ∥.∥1 on L with the property
∥.∥d1,v = Φ∗(φ∗

1∥.∥0,v . . . φ∗
k∥.∥0,v) for all places v of K. In this way start-

ing from a model (X̃n, L̃n) we can build a new model (X̃n+1, L̃n+1) and
for each place v of K we will have a sequence of metrics ∥.∥n,v satisfy-
ing the recurrence 3.7.1 and therefore a canonical metric ∥.∥v,{φ1,...,φk}
associated L and the maps φ1, . . . , φk over each place v. We are ready
now to prove theorem 3.6.

Proof. For a section s ∈ Γ(X,L), v ∈ MK and P ∈ X \ Supp(s), let’s
define the function

λ̂L,{φ1,...,φk}(P, v) = − log ∥s(P )∥v,{φ1,...,φk}.

The function so defined is a local height associated to E because the
canonical metric is an adelic metric on L. The functional equation
satisfied by the canonical metric forces

k∑
i=1

λ̂L,{φ1,...,φk}(φi(P ), v) =
k∑

i=1

− log ∥s(φi(P ))∥v,{φ1,...,φk}

= − log
k∏

i=1

φ∗
i ∥s(P )∥v,{φ1,...,φk}

= − log Φ−1∗∥s(P )∥dv,{φ1,...,φk}

= − log |f(P )|v∥s(P )∥dv,{φ1,...,φk}

= −d log ∥s(P )∥v,{φ1,...,φk} + v(f(P ))

= dλ̂L,{φ1,...,φk}(P ) + v(f(P ))

The uniqueness of the canonical height follows from the properties (1)
and (2) as discussed in the proof of theorem 4.2.1 of [8]. Suppose that

λ̂L,{φ1,...,φk} and λ̂′
L,{φ1,...,φk} were two canonical height functions with

properties (1) and (2), then their difference δ(P, v) can be extended to
a MK-bounded and MK-continuous function on X(K̄) satisfying

|δ(P, v)| ≤ 1

dl
|
∑
φ∈Fl

δ(φ(P ), v)| ≤ kl

dl
→ 0.
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(3) The weighted sum hλ̂(P ) on the right hand side of (3) is a Weil
height associated to E, so by 3.2 it will be sufficient to prove that it sat-
isfy the functional equation hλ̂(φ1(P )) + · · ·+ hλ̂(φk(P )) = dhλ̂(P ) for
all P ∈ X(K). For P ∈ X \(Supp(E)∪Supp(φ∗

1E)∪· · ·∪Supp(φ∗
kE)),

the functional equation follows from (2) and the product formula. For
a point P ∈ Supp(E)∪Supp(φ∗

1E)∪· · ·∪Supp(φ∗
kE) choose a rational

function t such that P /∈ Supp(E ′)∪Supp(φ∗
1E

′)∪· · ·∪Supp(φ∗
kE

′) for

the new divisor E ′ = E − div(t). Now using the function f ′ = ftd∏k
i=1 t◦φi

we get again φ∗
1E

′ + · · · + φ∗
kE

′ = dE ′ + div(f ′) and the formula still
holds. �
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