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Canonical metrics and canonical heights

Metrics on line bundles

definition

Definition

Let X be a projective algebraic variety, together with absolute
value function |.| defined on the structural sheaf OX . A metric ‖.‖
on a line bundle L ∈ Pic(X ) is a collection of metrics ‖.‖x on the
fibres Lx , varying continuously on x , in such a way that for any
open set U ⊂ X and s ∈ Γ(U,L), the continuous function
‖s‖U : U → R+ satisfies ‖fs‖ = |f |‖s‖ for f ∈ OX (U).

Example

Consider a projective variety X defined over over a number field K
and L ∈ Pic(X ). For a place σ : K ↪→ C at infinity, we can take
the norm |x |σ = |σ(x)| in K and put hermitian metrics on
Lσ = L ⊗σ C. The datum (L, ‖.‖σ), where σ is moving in places
at infinity is called a hermitian line bundle.
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Metrics on line bundles

Local situation: Algebraic metrics for line bundles over ultrametric fields

Ultrametric situation: Let K be a complete ultrametric field which
is the field of fractions of a complete discrete valuation ring OK .
Let X be a projective variety over K and L a line bundle on X .

Definition

(Algebraic metrics) A model (X̃ , L̃) of some power (X ,Le) defines
a metric on L in the following way:
Let εU : OX̃ (U)

∼−→ L̃|U be a local frame for L̃|U , then every

non-zero section sU : U → L̃|U will be written as sU = εU fU for
some fU ∈ OX̃ (U). When we restrict ourself to U = U × Spec(K ),

we get εU : OX (U)
∼−→ Le |U and for any section sU of L|U we

could write seU = εU fU . We declare ‖sU‖L̃ = |fU |1/e or equivalently
‖εU‖L̃ = 1 on U.
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Metrics on line bundles

Local situation: Algebraic metrics for line bundles over ultrametric fields

We want to consider a particular class of metrics that differs from
algebraic metrics by a bounded a continuous function:

Definition

A metric ‖.‖ on L is called bounded and continuous if there is a

model (X̃ , L̃) such that log ‖.‖
‖.‖L̃

is bounded an continuous on

X (K ). The space of bounded and continuous metrics on L will be
denoted by BdM(X ,L).
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Metrics on line bundles

Polarized dynamics and canonical metric

Let X be a projective variety and consider a system of k maps
ϕi : X −→ X for i = 1, . . . , k .

Definition

We say that the system (X , {ϕ1, . . . , ϕk},L, q) is a polarized
dynamical system of k maps if there exist an ample line bundle L
on Pic(X )⊗ R such that

⊗k
i=1 ϕ

∗
i L

∼−→ Lq for some real number
q > k .

A polarization in other words is saying that the operator

Φ∗q = (
k∏

i=1

ϕ∗i )1/q : Pic(X ) −→ Pic(X )

has a fixed point L for some real number q > k. When
L ∈ Pic(X )⊗Q and q = d ∈ Q we will say that system is
polarized by a Q-bundle.
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Metrics on line bundles

Polarized dynamics and canonical metric

Lemma

Let (X , {ϕ1, ..., ϕk},L, d) be a system polarized by a Q-bundle
over a algebraically closed valuation field. Suppose that each of
the ϕi : X −→ X is surjective and we have fixed an isomorphism
Φ : Ld '

⊗k
i=1 ϕ

∗
i L. Let us assume that we have a bounded and

continuous metric ‖.‖0 in L. Then, there exist a bounded and
continuous metric ‖.‖{ϕ1,...,ϕk} on L satisfying the equation

‖.‖d{ϕ1,...,ϕk} = Φ∗(ϕ∗1‖.‖{ϕ1,...,ϕk} . . . ϕ
∗
k‖.‖{ϕ1,...,ϕk})

The metric ‖.‖{ϕ1,...,ϕk} is called the canonical metric associated to
the system (X , {ϕ1, ..., ϕk},L, d).

The metric ‖.‖{ϕ1,...,ϕk} is then a fixed point of the operator

Φ∗d = (
k∏

i=1

ϕ∗i )1/d : BdM(X ,L) −→ BdM(X ,L).
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Metrics on line bundles

Polarized dynamics and canonical metric

Proof.

For the proof of the Lemma we construct recursively the metrics
‖.‖dn = Φ∗(ϕ∗1‖.‖n−1 . . . ϕ

∗
k‖.‖n−1) and consider the bounded and

continuous function h(x) = log ‖.‖1

‖.‖0
to obtain the identity

log ‖.‖n =
n−1∑
j=0

(
k∑

i=1

1

d
Φ∗ϕ∗i )jh + log ‖.‖0

Because ‖(
∑k

i=1
1
d Φ∗ϕ∗i )jh‖sup ≤ ( kd )j‖h‖sup, we will get that the

series
∑n−1

j=0 (
∑k

i=1
1
d Φ∗ϕ∗i )jh converges absolutely and uniformly

to a bounded and continuous function hϕ1...ϕk
and the metric ‖.‖n

converges uniformly to the continuous and bounded metric

‖.‖{ϕ1,...,ϕk} = ‖.‖0 exp(hϕ1...ϕk
).
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Metrics on line bundles

Global situation: Adelic Metrics for line bundles on number fields

Global Situation: Let X be a projective algebraic variety defined
over a number field K :

Definition

A bounded and continuous adelic metric ‖.‖ on a line bundle
L ∈ Pic(X ) is a collection of bounded and continuous metrics
‖.‖ = (‖.‖v )v∈MK

, where v runs over the places of K ; in such a
way that for all but finitely many v , the metric is induced by the
same OK -model.

Example

Let X is a projective variety and L an ample line bundle on X .
Some power of L will be very ample and therefore we can build a
model (X̃ , L̃) of some power (X ,Le) over Spec(OK ), with L̃
hermitian line bundle. This induces an adelic metric ‖.‖ on L.
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Metrics on line bundles

Global situation: Adelic Metrics for line bundles on number fields

Let (X , {ϕ1, ..., ϕk},L, d) be a polarized dynamical system of k
surjective morphisms over a number field K and let us fix an
isomorphism Φ : Ld '

⊗k
i=1 ϕ

∗
i L. Suppose that X is a projective

variety and L is an ample line bundle. We can build a model
(X̃ , L̃) of some power (X ,Le) over Spec(OK ), with L̃ hermitian
line bundle. This induces an adelic metric ‖.‖0 on L.

Remark

There is an open U ⊂ Spec(OK ) such that the maps extend to
ϕi : X̃U −→ X̃U and ΦU : LdU '

⊗k
i=1 ϕ

∗
i LU in Pic(X̃U). It follows

that for v ∈ U

‖.‖d0,v = Φ∗(ϕ∗1‖.‖0,v . . . ϕ
∗
k‖.‖0,v )

We can build a sequence of models (X̃n, L̃n) inducing adelic
metrics ‖.‖n that converge to a limit adelic metric
‖.‖n −→ ‖.‖{ϕ1,...,ϕk}, which we call the canonical metric.
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Metrics on line bundles

Global situation: Adelic Metrics for line bundles on number fields

Let us define the normalization ϕ̃i : X̃ i −→ X̃ of the composition
of morphisms ϕi : X̃U −→ X̃U ↪→ X̃ . Let X̃1 be the Zariski closure
of

X̃U
∆−→ X̃U ×OK

· · · ×OK
X̃U ↪→ X̃ 1 ×OK

· · · ×OK
X̃ k

where ∆ is the diagonal map. Let pi : X̃ 1 ×OK
· · · ×OK

X̃ k −→ X̃ i

denote the projection onto the i-th factor.

Remark

We can build a new model (X̃1, L̃1) of (X ,Le) when we put

L̃1 = [((ϕ̃1 ◦ p1)∗L̃ ⊗ · · · ⊗ (ϕ̃k ◦ pk)∗L̃))]1/d .

This new model induces an adelic metric ‖.‖1 on L with the
property ‖.‖dv ,1 = Φ∗(ϕ∗1‖.‖v ,0 . . . ϕ∗k‖.‖v ,0) for all places v of K .

In this way starting from a model (X̃n, L̃n) we can build a new
model (X̃n+1, L̃n+1) and for each place v of K we will have a
sequence of metrics ‖.‖v ,n converging to the metric ‖.‖v ,{ϕ1,...,ϕk}.
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Canonical height for several morphisms

The work of Kawaguchi showed the existence of canonical height
and local canonical heights associated to systems of several maps.

Theorem

Let (X , {ϕ1, ..., ϕk},L, q) be a polarized dynamical system of k
morphisms over a number field K . Then there exist unique a real
valued function

ĥL,{ϕ1,...,ϕk} : X (K̄ ) −→ R

with the following properties

(1) ĥL,{ϕ1,...,ϕk} is a Weil height associated to L,

(2)
∑k

i=1 ĥL,{ϕ1,...,ϕk}(ϕi (x)) = qĥL,{ϕ1,...,ϕk}(x) for all x ∈ X (K̄ ).

The function ĥL,{ϕ1,...,ϕk} is called the canonical height function
associated to (X , {ϕ1, ..., ϕk},L, q).
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Canonical height for several morphisms

Local canonical height function

Local heights: Suppose that X is a normal projective variety
defined over a number field K and U ⊂ X is a non-empty open
set. Let us denote by MK the set of absolute values on K and by
M = MK̄ , the set of absolute values on K̄ extending those of K .

Definition

A function λ : U(K̄ )×M −→ R is called MK -continuous if, for
every v ∈ MK , λv : U(K̄ ) −→ R, x 7→ λ(x , v) is continuous in the
v -adic topology. A function γ : MK −→ R is called MK -constant if
γ(v) = 0 for all but finitely many v ∈ MK .
A function α : U(K̄ )×M −→ R is called MK -bounded if there is a
MK -constant function γ such that |α(x , v)| ≤ γ(v) for all
(x , v) ∈ U(K̄ )×M.
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Canonical height for several morphisms

Local canonical height function

Definition

Let D ∈ Div(X )⊗R. A function λD : X \ Supp(D)(K̄ )×M −→ R
is a said to be a local height associated to D if there is an affine
covering {Ui} of X , a Cartier divisor {(Ui , fi )} representing D such
that the function α(x , v) = λD(x , v)− v ◦ fi (x) is MK -bounded
and MK -continuous for x ∈ (Ui \ Supp(D))(K̄ ) and v ∈ M.

Let L ∈ Pic(X ) and ‖.‖ = {‖.‖v , v ∈ MK} a bounded and
continuous adelic metric on L. Take a section s ∈ Γ(X ,L) and
consider the function

α(x , v) = − log ‖s(x)‖v − v ◦ fi (x) = − log ‖εUi
(x)‖v

for a local frame εUi
: OX (Ui )

∼−→ L|Ui . By the definition of the
adelic metric induced by a model, we will have ‖εUi

(x)‖ = 1 for all
x ∈ Ui and almost all v ∈ MK , therefore α is a MK -bounded and
MK -continuous and λD(x , v) = − log ‖s(x)‖v is a local height
associated to D = div(s).
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Canonical height for several morphisms

Local canonical height function

Theorem

Let X be a normal projective variety and consider the polarized
system (X , {ϕ1, ..., ϕk},L, q) of k morphisms over a number field
K . Suppose that E is a divisor on X associated to the line bundle
L such that ϕi (X ) is not contained in Supp(E ) and
ϕ∗1E + · · ·+ ϕ∗kE = qE + div(f ) for some rational function

f ∈ K̄ (X )∗ ⊗ R. There exist a unique function λ̂L,{ϕ1,...,ϕk}
satisfying:

(1) λ̂L,{ϕ1,...,ϕk} is a Weil local height associated to E .

(2) for any x ∈ X \ (Supp(E ) ∪ Supp(ϕ∗1E ) ∪ · · · ∪ Supp(ϕ∗kE ))
and for all v ∈ M,

k∑
i=1

λ̂L,{ϕ1,...,ϕk}(ϕi (x), v) = qλ̂L,{ϕ1,...,ϕk}(x , v) + v(f (x)).



Canonical metrics and canonical heights

Canonical height for several morphisms

Local canonical height function

Definition

The function λ̂L,{ϕ1,...,ϕk} is called the local canonical height
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Theorem

Let X be a normal projective variety over the number field K and
the polarization (X , {ϕ1, ..., ϕk},L, d) by a Q-bundle L. Suppose
that E is a divisor on X associated to the line bundle L such that
ϕi (X ) is not contained in Supp(E ) and, for some rational function
f ∈ K̄ (X )∗, ϕ∗1E + · · ·+ ϕ∗kE = dE + div(f ) Then, for
s ∈ Γ(X ,L), v ∈ MK and x ∈ X \ Supp(s), the function:

λ̂L,{ϕ1,...,ϕk}(x , v) = − log ‖s(x)‖v ,{ϕ1,...,ϕk}

will be the local canonical height function associated to the
polarized dynamical system (X , {ϕ1, ..., ϕk},L, d).
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Canonical height for several morphisms

Local canonical height function

Proof: For a section s ∈ Γ(X ,L), v ∈ MK and x ∈ X \ Supp(s),
consider the function

λ̂L,{ϕ1,...,ϕk}(x , v) = − log ‖s(x)‖v ,{ϕ1,...,ϕk}.

The function so defined is a local height associated to E because
the canonical metric is the uniform limit of bounded and
continuous adelic metrics. The functional equation satisfied by the
canonical metric forces

k∑
i=1

λ̂L,{ϕ1,...,ϕk}(ϕi (x), v) =
k∑

i=1

− log ‖s(ϕi (x))‖v ,{ϕ1,...,ϕk}

= − log Φ−1∗‖s(x)‖dv ,{ϕ1,...,ϕk}

= − log |f (x)|v‖s(x)‖dv ,{ϕ1,...,ϕk}

= −d log ‖s(x)‖v ,{ϕ1,...,ϕk} + v(f (x))

= d λ̂L,{ϕ1,...,ϕk}(x) + v(f (x))
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Metrics on real line bundles

We want to consider metrics on real line bundles:

Definition

An element L ∈ Pic(X )⊗ R can be written as a formal product

L =
⊗

1≤j≤t
Lrjj = L⊗r1

1 ⊗ · · · ⊗ L⊗rtt ,

where Lj ∈ Pic(X ) for j = 1, . . . , t and the r1, . . . , rt ∈ R are real
numbers.

Definition

A section s ∈ Γ(U,L) over an open set U ⊂ X , can be written as
the formal product s = sr1

1 ⊗ · · · ⊗ srtt , where sj ∈ Γ(U,Lj). In
particular for some open cover {U j}j∈J of X , we have local frames

εU j = εr1

U j
1

⊗ · · · ⊗ εrt
U j
t

: OX (U j)
∼−→ L|U j .
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Real line bundles

Metrics on real line bundles

Definition

To put a metric on the fibre Lx is to be able to measure the length
of a non-zero section s(x) =

⊗t
j=1 sj(x)rj ∈ Lx , that is, to put a

metric ‖.‖j on each Lj(x) for j = 1 . . . t and declare

‖s(x)‖ =
t∏

j=1

‖sj(x)‖rjj .

Definition

Given a map ϕ : X ′ −→ X and a real line bundle L, we can define
the pullback by: L = L⊗r1

1 ⊗ · · · ⊗ L⊗rtt ⇒ ϕ∗L =
⊗

j(ϕ
∗Lj)⊗rj

In the same way if ‖.‖ is a metric on L, we define the pullback
metric by ϕ∗‖s ′(x ′)‖ =

∏
j ‖s ′j (ϕ(x ′))‖rjj , for U ′ an open set,

x ′ ∈ U ′ ⊂ X ′ and s ′ ∈ Γ(U ′,L′).
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Metrics on real line bundles

Definition

(Definition of the complete and algebraically closed field Cv ) Let
K be a number field and v a finite place of K . First complete K
for the absolute value given by v , then take its algebraic closure;
this field admits a unique absolute value extending v and we take
its completion for that absolute value to obtain Cv .

Let X be a projective variety over the complete ultrametric field
Cv and L an element of Pic(X )⊗R. Given a model (X̃ , L̃), where
X̃ is a OCv -scheme with generic fibre X and L̃ is a real line bundle
on X̃ such that L̃ ⊗ Cv = Le for some power e > 0.

Definition

We define a metric ‖.‖L̃ induced by the model (X̃ , L̃) in a similar
way as we did with Q-bundle declaring ‖εU‖L̃ = 1 on U for a local

frame εU : OX̃ (U)
∼−→ L̃|U.
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Polarization for real line bundle and canonical metric

Lemma

Let K be a number field and v a finite place of K . Let
(X , {ϕ1, ..., ϕk},L, q) be a polarized dynamical system over
algebraically closed valuation field Cv . Assume that each of the
ϕi : X −→ X is surjective and we have fixed an isomorphism
Φ : Lq '

⊗k
i=1 ϕ

∗
i L. Suppose that we have a bounded and

continuous metric ‖.‖0 in L. Then the metrics ‖.‖n on L defined
inductively by ‖.‖qn = Φ∗(ϕ∗1‖.‖n−1 . . . ϕ

∗
k‖.‖n−1), converge

uniformly to a continuous and bounded metric on L, which we
denote by ‖.‖{ϕ1,...,ϕk}. The metric ‖.‖{ϕ1,...,ϕk} is the unique
metric with the property

‖.‖q{ϕ1,...,ϕk} = Φ∗(ϕ∗1‖.‖{ϕ1,...,ϕk} . . . ϕ
∗
k‖.‖{ϕ1,...,ϕk})

and will be called the canonical metric associated to L and the
maps ϕ1, . . . , ϕk .
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Polarization for real line bundle and canonical metric

Definition

Let X be defined over a number field K . An bounded and
continuous adelic metric ‖.‖ for a line bundle L ∈ Pic(X )⊗ R is a
collection of continuous and bounded metrics ‖.‖ = (‖.‖v )v∈MK

,
where v runs over the places of K ; in such a way that for all but
finitely many v , the metric is induced by the same OK -model.

Remark

Given a polarized dynamical system (X , {ϕ1, . . . , ϕk},L, q) over a
number field K , the idea will be, to build a sequence of models
(X̃n, L̃n) inducing metrics ‖.‖n satisfying the functional equation

‖.‖qn = Φ∗(ϕ∗1‖.‖n−1 . . . ϕ
∗
k‖.‖n−1),

so we can apply the previous lemma and obtain an adelic metric
which is the canonical metric at every place.
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The models (X̃n, L̃n) inducing the adelic metrics ‖.‖n on L can be
defined recursively as follows: Suppose that a model (X̃n−1L̃n−1) is
already being defined. The map ϕi : X −→ X can be extended to
an open set ϕi : X̃n−1(U) −→ X̃n−1(U).

Let us consider the
normalization ϕ̃i : X̃ i

n−1 −→ X̃n−1 of the composition of

morphisms ϕi : X̃n−1(U) −→ X̃n−1(U) ↪→ X̃n−1 and take X̃n to be
the Zariski closure of

X̃n−1(U)
∆−→ X̃n−1(U)×OK

· · ·×OK
X̃n−1(U) ↪→ X̃ 1

n−1×OK
· · ·×OK

X̃ k
n−1

Let pi : X̃ 1
n−1 ×OK

· · · ×OK
X̃ k
n−1 −→ X̃ i

n−1 denote the projection
onto the i-th factor and define:
L̃n = [((ϕ̃1 ◦ p1)∗L̃n−1 ⊗ · · · ⊗ (ϕ̃k ◦ pk)∗L̃n−1))]1/d .

Remark

The induced metrics so defined satisfy the functional equation:

‖.‖qn = Φ∗(ϕ∗1‖.‖n−1 . . . ϕ
∗
k‖.‖n−1)
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Theorem

(Local canonical height associated to polarizations by real line
bundles) Let X be a normal projective variety and consider the
polarized system (X , {ϕ1, ..., ϕk},L, q) of k morphisms over a
number field K , where L is a real line bundle. Suppose that E is a
real divisor divisor on X associated to the line L such that ϕi (X ) is
not contained in Supp(E ) and ϕ∗1E + · · ·+ ϕ∗kE = qE + div(f ) for
some rational function f ∈ K̄ (X )∗ ⊗ R. The function defined by:

λ̂L,{ϕ1,...,ϕk}(x , v) = − log ‖s(x)‖v ,{ϕ1,...,ϕk},

for a section s ∈ Γ(X ,L), v ∈ MK and x ∈ X \ Supp(s), is the
local canonical associated to (X , {ϕ1, ..., ϕk},L, q).
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Theorem

The function λ̂L,{ϕ1,...,ϕk}(x , v) = − log ‖s(x)‖v ,{ϕ1,...,ϕk} satisfies:

(1) λ̂L,{ϕ1,...,ϕk} is a Weil local height associated to E .

(2) for any x ∈ X \ (Supp(E ) ∪ Supp(ϕ∗1E ) ∪ · · · ∪ Supp(ϕ∗kE ))
and for all v ∈ M,

k∑
i=1

λ̂L,{ϕ1,...,ϕk}(ϕi (x), v) = qλ̂L,{ϕ1,...,ϕk}(x , v) + v(f (x)).

(3) For L an extension of K , w and extension of v and x ∈ X (L),
we have the decomposition:

ĥL,{ϕ1,...,ϕk}(x) =
1

[L : K ]

∑
w∈ML

[Lw : Kv ]λ̂L,{ϕ1,...,ϕk}(x ,w).
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