
Taken from Lecture notes for Analysis I by Prof. Mitchell Faulk

1 Lecture 16: Mean value theorem

Definition 1. Let f be a real function defined on a metric space X. Say that f has
a local maximum at p ∈ X if there is a δ > 0 such that whenever q ∈ X satisfies
d(p, q) < δ, then f(q) 6 f(p). The notion of local minimum is defined similarly.

Theorem 2. Let f be defined on [a, b]. Suppose f is differentiable at x ∈ (a, b) and
f has a local maximum at x. Then f ′(x) = 0.

Proof. Exercise. Hint: compute the left-hand and right-hand limits separately.

Let f : [a, b]→ R, and let G ⊂ R2 be the graph of f given by

G = {(x, f(x)) : x ∈ [a, b]}.

Note that the secant line connecting the points (a, f(a)) and (b, f(b)) has slope given
by

f(b)− f(a)

b− a
.

The mean value theorem asserts that if f is differentiable on [a, b], then this slope is
equal to the slope of some tangent line.

Theorem 3 (Mean Value Theorem). Let f be continuous on [a, b] and differentiable
on (a, b). Then there is a point c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Proof. Let h(t) be the function defined for t ∈ [a, b] by

h(t) = t(f(b)− f(a))− (b− a)f(t).

Then h is continuous on [a, b] and differentiable on (a, b). We also have that

h(b) = b(f(b)− f(a))− (b− a)f(b) = a · f(b)− b · f(a)

and
h(a) = a(f(b)− f(a))− (b− a)f(a) = a · f(b)− b · f(a),

which means that h(a) = h(b). If h is constant, then we are done because we can let
c be any point. Otherwise, there is a point t ∈ (a, b) such that h(t) 6= h(a). Without
loss of generality we may assume that h(t) > h(a). Because h is continuous, there
is a point x ∈ (a, b) where h achieves its maximum. The previous result then shows
that h′(x) = 0, which is what we require.
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There is a generalized version of the previous result too.

Theorem 4 (Generalized Mean Value Theorem). Let f, g be continuous on [a, b] and
differentiable on (a, b). Then there is a point x ∈ (a, b) such that

g′(x)[f(b)− f(a)] = f ′(x)[g(b)− g(a)].

Proof. Replicate the proof above but with

h(x)[f(b)− f(a)]g(t)− [g(b)− g(a)]f(t)

instead.

Definition 5. Let f be defined on [a, b]. We say that

(a) f is monotonically increasing if whenever x 6 y, then f(x) 6 f(y)

(b) f is monotonically decreasing if whenever x 6 y, then f(x) > f(y).

Corollary 6. Suppose f is differentiable on (a, b).

(a) If f ′(x) > 0 for each x ∈ (a, b), then f is increasing.

(b) If f ′(x) 6 0 for each x ∈ (a, b), then f is decreasing.

(c) If f ′(x) = 0 for each x ∈ (a, b), then f is constant.

Proof. The proofs follow from the equation

f ′(c)(x− y) = f(x)− f(y)

which holds for each x < y and for some c satisfying x < c < y.

1.1 L’Hospital’s rule

Theorem 7 (L’Hospital’s Rule: Version 1). Let f and g be differentiable on (a, b).
Suppose that

(a) g′(x) 6= 0 for each x ∈ (a, b)

(b) limx→a
f ′(x)
g′(x)

= A

(c) limx→a f(x) = limx→a g(x) = 0.

Then

lim
x→a

f(x)

g(x)
= A.
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Proof. We proceed in steps.
Assertion 1. If q satisfies A < q, then there is a point c ∈ (a, b) such that whenever
a < x < c we have

f(x)

g(x)
< q.

Proof of Assertion 1. Let r be a number satisfying A < r < q. Because f ′(x)/g′(x)→
A, there is a point c ∈ (a, b) such that whenever a < x < c we have

f ′(x)

g′(x)
< r.

If x, y satisfy a < x < y < c, then the generalized mean value theorem shows that
there is a point t ∈ (x, y) such that

f(x)− f(y)

g(x)− g(y)
=
f ′(t)

g′(t)
< r.

We then take the limit of this inequality as x→ a and use hypothesis (c) to find that

f(y)

g(y)
6 r < q

for each a < y < c. This completes the proof of Assertion 1.
Assertion 2. If p satisfies p < A, then there is a point d ∈ (a, b) such that whenever
a < x < d we have

p <
f(x)

g(x)
.

Proof of Assertion 2. The proof is similar to that of Assertion 1.
The proof now follows from Assertions 1 and 2 together.

The following version is also useful. Note that hypothesis (c) is replaced by a
slightly different hypothesis (c’) involving only the limit of g(x) as x→ a.

Theorem 8 (L’Hospital’s Rule: Version 2). Let f and g be differentiable on (a, b).
Suppose that

(a) g′(x) 6= 0 for each x ∈ (a, b)

(b) limx→a
f ′(x)
g′(x)

= A

(c’) limx→a g(x) =∞.

Then

lim
x→a

f(x)

g(x)
= A.

Proof. See Rudin.
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1.2 Taylor’s Theorem

Definition 9. If f has a derivative f ′ on an interval and if f ′ is itself differentiable,
then we will denote the derivative of f ′ by f ′′. If we can continue this process, then
we obtain functions

f, f ′, f ′′, f (3), . . . , f (n)

where f (n) is the nth derivative of f .

Theorem 10. Let f be defined on [a, b]. Suppose that f (n−1) is continuous on [a, b]
and f (n)(t) exists for each t ∈ (a, b). Let α and β be distinct points of [a, b] and define
the polynomial

P (t) =
n−1∑
k=0

f (k)(α)

k!
(t− α)k.

Then there is a point x between α and β such that

f(β) = P (β) +
f (n)(x)

n!
(β − α)n.

Remark 11. For the case n = 1, the polynomial P (t) is just constant P (t) = f(α),
and the statement is the mean value theorem.

Proof. Let M be the number defined by

f(β) = P (β) +M(β − α)n.

Note that our goal is to find an x between α and β such that f (n)(x) = Mn!. Define
a function g by the rule

g(t) = f(t)− P (t)−M(t− α)n.

Note that the nth derivative of g satisfies

g(n)(t) = f (n)(t)− 0−Mn!.

It follows that the proof will be complete if we can find a point x between α and β
such that g(n)(x) = 0.

Specializing to the point t = α, we note that because f (k)(α) = P (k)(α) for each
k = 1, . . . , n− 1, we have that

g(α) = g′(α) = · · · = g(n−1)(α) = 0.

At the point t = β, the choice of M implies directly that g(β) = 0. The mean value
theorem asserts that there is a point x1 between α and β such that g′(x1) = 0. For the
same reason, there is a point x2 between α and x1 such that g′′(x2) = 0. Iteratively,
we obtain a point xn between α and xn−1 such that g(n)(xn) = 0.
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