Taken from Lecture notes for Analysis I by Prof. Mitchell Faulk

1 Lecture 16: Mean value theorem

Definition 1. Let f be a real function defined on a metric space X. Say that f has a local maximum at $p \in X$ if there is a $\delta>0$ such that whenever $q \in X$ satisfies $d(p, q)<\delta$, then $f(q) \leqslant f(p)$. The notion of local minimum is defined similarly.

Theorem 2. Let f be defined on $[a, b]$. Suppose f is differentiable at $x \in(a, b)$ and f has a local maximum at x. Then $f^{\prime}(x)=0$.

Proof. Exercise. Hint: compute the left-hand and right-hand limits separately.
Let $f:[a, b] \rightarrow \mathbb{R}$, and let $G \subset \mathbb{R}^{2}$ be the graph of f given by

$$
G=\{(x, f(x)): x \in[a, b]\} .
$$

Note that the secant line connecting the points $(a, f(a))$ and $(b, f(b))$ has slope given by

$$
\frac{f(b)-f(a)}{b-a}
$$

The mean value theorem asserts that if f is differentiable on $[a, b]$, then this slope is equal to the slope of some tangent line.

Theorem 3 (Mean Value Theorem). Let f be continuous on $[a, b]$ and differentiable on (a, b). Then there is a point $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Proof. Let $h(t)$ be the function defined for $t \in[a, b]$ by

$$
h(t)=t(f(b)-f(a))-(b-a) f(t) .
$$

Then h is continuous on $[a, b]$ and differentiable on (a, b). We also have that

$$
h(b)=b(f(b)-f(a))-(b-a) f(b)=a \cdot f(b)-b \cdot f(a)
$$

and

$$
h(a)=a(f(b)-f(a))-(b-a) f(a)=a \cdot f(b)-b \cdot f(a),
$$

which means that $h(a)=h(b)$. If h is constant, then we are done because we can let c be any point. Otherwise, there is a point $t \in(a, b)$ such that $h(t) \neq h(a)$. Without loss of generality we may assume that $h(t)>h(a)$. Because h is continuous, there is a point $x \in(a, b)$ where h achieves its maximum. The previous result then shows that $h^{\prime}(x)=0$, which is what we require.

There is a generalized version of the previous result too.
Theorem 4 (Generalized Mean Value Theorem). Let f, g be continuous on $[a, b]$ and differentiable on (a, b). Then there is a point $x \in(a, b)$ such that

$$
g^{\prime}(x)[f(b)-f(a)]=f^{\prime}(x)[g(b)-g(a)] .
$$

Proof. Replicate the proof above but with

$$
h(x)[f(b)-f(a)] g(t)-[g(b)-g(a)] f(t)
$$

instead.
Definition 5. Let f be defined on $[a, b]$. We say that
(a) f is monotonically increasing if whenever $x \leqslant y$, then $f(x) \leqslant f(y)$
(b) f is monotonically decreasing if whenever $x \leqslant y$, then $f(x) \geqslant f(y)$.

Corollary 6. Suppose f is differentiable on (a, b).
(a) If $f^{\prime}(x) \geqslant 0$ for each $x \in(a, b)$, then f is increasing.
(b) If $f^{\prime}(x) \leqslant 0$ for each $x \in(a, b)$, then f is decreasing.
(c) If $f^{\prime}(x)=0$ for each $x \in(a, b)$, then f is constant.

Proof. The proofs follow from the equation

$$
f^{\prime}(c)(x-y)=f(x)-f(y)
$$

which holds for each $x<y$ and for some c satisfying $x<c<y$.

1.1 L'Hospital's rule

Theorem 7 (L'Hospital's Rule: Version 1). Let f and g be differentiable on (a, b). Suppose that
(a) $g^{\prime}(x) \neq 0$ for each $x \in(a, b)$
(b) $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=A$
(c) $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0$.

Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=A
$$

Proof. We proceed in steps.
Assertion 1. If q satisfies $A<q$, then there is a point $c \in(a, b)$ such that whenever $a<x<c$ we have

$$
\frac{f(x)}{g(x)}<q .
$$

Proof of Assertion 1. Let r be a number satisfying $A<r<q$. Because $f^{\prime}(x) / g^{\prime}(x) \rightarrow$ A, there is a point $c \in(a, b)$ such that whenever $a<x<c$ we have

$$
\frac{f^{\prime}(x)}{g^{\prime}(x)}<r
$$

If x, y satisfy $a<x<y<c$, then the generalized mean value theorem shows that there is a point $t \in(x, y)$ such that

$$
\frac{f(x)-f(y)}{g(x)-g(y)}=\frac{f^{\prime}(t)}{g^{\prime}(t)}<r
$$

We then take the limit of this inequality as $x \rightarrow a$ and use hypothesis (c) to find that

$$
\frac{f(y)}{g(y)} \leqslant r<q
$$

for each $a<y<c$. This completes the proof of Assertion 1.
Assertion 2. If p satisfies $p<A$, then there is a point $d \in(a, b)$ such that whenever $a<x<d$ we have

$$
p<\frac{f(x)}{g(x)}
$$

Proof of Assertion 2. The proof is similar to that of Assertion 1.
The proof now follows from Assertions 1 and 2 together.
The following version is also useful. Note that hypothesis (c) is replaced by a slightly different hypothesis (c') involving only the limit of $g(x)$ as $x \rightarrow a$.

Theorem 8 (L'Hospital's Rule: Version 2). Let f and g be differentiable on (a, b). Suppose that
(a) $g^{\prime}(x) \neq 0$ for each $x \in(a, b)$
(b) $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=A$
(c') $\lim _{x \rightarrow a} g(x)=\infty$.
Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=A
$$

Proof. See Rudin.

1.2 Taylor's Theorem

Definition 9. If f has a derivative f^{\prime} on an interval and if f^{\prime} is itself differentiable, then we will denote the derivative of f^{\prime} by $f^{\prime \prime}$. If we can continue this process, then we obtain functions

$$
f, f^{\prime}, f^{\prime \prime}, f^{(3)}, \ldots, f^{(n)}
$$

where $f^{(n)}$ is the nth derivative of f.
Theorem 10. Let f be defined on $[a, b]$. Suppose that $f^{(n-1)}$ is continuous on $[a, b]$ and $f^{(n)}(t)$ exists for each $t \in(a, b)$. Let α and β be distinct points of $[a, b]$ and define the polynomial

$$
P(t)=\sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!}(t-\alpha)^{k}
$$

Then there is a point x between α and β such that

$$
f(\beta)=P(\beta)+\frac{f^{(n)}(x)}{n!}(\beta-\alpha)^{n}
$$

Remark 11. For the case $n=1$, the polynomial $P(t)$ is just constant $P(t)=f(\alpha)$, and the statement is the mean value theorem.

Proof. Let M be the number defined by

$$
f(\beta)=P(\beta)+M(\beta-\alpha)^{n} .
$$

Note that our goal is to find an x between α and β such that $f^{(n)}(x)=M n$!. Define a function g by the rule

$$
g(t)=f(t)-P(t)-M(t-\alpha)^{n}
$$

Note that the nth derivative of g satisfies

$$
g^{(n)}(t)=f^{(n)}(t)-0-M n!.
$$

It follows that the proof will be complete if we can find a point x between α and β such that $g^{(n)}(x)=0$.

Specializing to the point $t=\alpha$, we note that because $f^{(k)}(\alpha)=P^{(k)}(\alpha)$ for each $k=1, \ldots, n-1$, we have that

$$
g(\alpha)=g^{\prime}(\alpha)=\cdots=g^{(n-1)}(\alpha)=0
$$

At the point $t=\beta$, the choice of M implies directly that $g(\beta)=0$. The mean value theorem asserts that there is a point x_{1} between α and β such that $g^{\prime}\left(x_{1}\right)=0$. For the same reason, there is a point x_{2} between α and x_{1} such that $g^{\prime \prime}\left(x_{2}\right)=0$. Iteratively, we obtain a point x_{n} between α and x_{n-1} such that $g^{(n)}\left(x_{n}\right)=0$.

