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Abstract. We explore some intersection properties of divisors associ-
ated to polarized dynamical systems on algebraic surfaces. As a con-
sequence, we obtain necessary geometric conditions for the existence of
polarizations of hyperbolic type and exhibit compactified divisors asso-
ciated to automorphisms on K3 surfaces that do not have the Dirichlet
property as defined by Moriwaki.

1. Introduction

Let K be a field, X a geometrically integral, normal projective variety
defined over K and ϕ : X −→ X a surjective, finite map also defined over K.
A situation like this will be called an algebraic dynamical system over the
field K and, we will say that the dynamical system ϕ : X −→ X is polarized
by a divisor 0 6= E ∈ Car(X), if there exist α > 1 such that ϕ∗E ∼ αE. In
a similar way a dynamical system on X can be polarized by a real divisor
E ∈ Car(X)⊗ R.

Now, for divisors D1, D2, . . . , Dd on a normal projective variety X of
dimension d, we have a multilinear intersection product (D1, D2, . . . , Dd),
that depends only on the linear equivalence class of the Di. In particular
we have the self-intersection (Dd) = (D, . . . ,D) of a divisor D with itself
d times. Due to linearity, the intersection index is closely related to the
polarization property. Let X be of dimension d and consider the polarized
dynamical system (X,ϕ,E, α) on X. From ϕ∗E ∼ αE we obtain the identity
αd(Ed) = ((ϕ∗E)d) = deg(ϕ)(Ed). As a consequence we have:

(1) If the polarizing divisor E is ample, then deg(ϕ) = αd.
(2) If deg(ϕ) 6= αd, then the self-intersection (Ed) = 0.

In the particular case of automorphisms:

Fact 1.1. If ϕ : X −→ X is an automorphism on X and (X,ϕ,E, α) is a
polarized dynamical system, then the self-intersection (Ed) = 0.

Suppose that we are in dimension d = 2. Let X be a smooth projective
surface and let ϕ : X −→ X be an automorphism on X. A situation like this
was studied by Wehler [16] for families of K3 surfaces with an infinite group
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of automorphism. Silverman in [15] focused in the family Sa,b of Wehler K3
surfaces obtained as complete intersection of a (1, 1)-form and a (2, 2)-form
in P2 × P2. The family Sa,b comes equipped with projections px and py
representing double coverings of P2

K . These projections determine rational
maps σx and σy in each of the members of the family. Let us suppose that σx
and σy are well defined morphisms and put ϕ = σy ◦σx. We can find divisors
E+ and E− polarizing the maps ϕ and ϕ−1 respectively. The real divisor
E+ + E− is ample and, as part of proposition 2.5 in [15], the intersection
numbers (E+, D) and (E−, D) are positive for every nonzero effective divisor
D.

A different family of Wehler K3 surfaces is the family Sc studied by Wang
[17] , Billard [4] and Baragar [1, 2]. This new family is defined by a (2, 2, 2)-
form in P1 × P1 × P1 and shares many of the properties of Sa,b. We can
find three involutions σ2,3, σ1,3, σ1,2 : Sc −→ Sc, that are well defined au-
tomorphisms on generic members of the family. In [4], for example, the
author introduces divisors E1 and E2 polarizing the maps ϕ = σ1σ3σ2 and
ϕ−1 = σ2σ3σ1 respectively. Again E1 + E2 is ample and the intersection
numbers (E1, D) and (E2, D) are positive for every nonzero effective divisor
D.

The results obtained for the dynamical system (X,ϕ,E, α) associated to
the action of an automorphism ϕ on a surface X depend on the existence
of a polarized dynamics (X,ϕ−1, E′, α) for the inverse map. Similar re-
sults can be obtained for the dynamical system (X,ϕ,E, α) of any self-map
ϕ : X −→ X provided that the polarization is “hypebolic” in the sense that
α−1 is also an eigenvalue of the linear map ϕ∗ : Pic(X)⊗R −→ Pic(X)⊗R.
If ϕ ∈ Aut(X), the existence of a hyperbolic polarization for ϕ, with say
ϕ−1∗E′ ∼ α−1E′, is equivalent to the existence of a pair of polarized dynam-
ics (X,ϕ,E, α) and (X,ϕ−1, E′, α), for the map ϕ and its inverse. To be able
to obtain positive intersection with effective divisors, we restrict ourselves
to the ample case, i.e., when E + E′ is ample.

Proposition 1.2. Let (X,ϕ,E, α) be an ample hyperbolic polarized system
on the smooth surface X over the field K. Then, for every nonzero effective
divisor 0 6= D ∈ Eff(X)R, we have (E,D) > 0. In the case ϕ ∈ Aut(X)
we will have two polarized dynamics (X,ϕ,E, α), (X,ϕ−1, E′, α) and the
intersection numbers (E,D) and (E′, D) are both positive.

Example 1.3. In section 2.4, we work with the family Sc of K3 surfaces and
present three maps τ1, τ2 and τ3 with ample hyperbolic polarization given
by pairs (S, ϕ,Ei, α) and (S, ϕ−1, Ej , α). Many arithmetic and geometric
results concerning rational points were studied in [4] in the system of polar-

izations τ2 = [(S, σ1σ3σ2, E1, β
3) , (S, σ2σ3σ1, E2, β

3)], where β = 3+
√

5
2 .

In section 3 we deal with the arithmetic case, putting canonical metrics on
polarizing divisors E associated to systems (X,ϕ,E, α) defined over number
fields K. The possibility of putting canonical metrics relative to the map
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ϕ : X −→ X on the associated line bundle L = O(E) at every place v of K,
was introduced by S. Zhang in [18]. In later presentations authors, like for
example Chambert-Loir [7, 8], considered analytic spaces πv : Xan

v −→ X
associated to X at each place v of K, and metrics on the analytifications
Lv = π∗vO(E) for each place v of K. For a real divisor E polarizing a
dynamical system ϕ : X −→ X, there exist a canonical way (proposition
2.1.1 and proposition 2.2.1 in [10]) to put a metric ‖.‖ϕ,v, associated to the
map ϕ, on the analytification Lv = π∗vL of the line bundle L = O(E). The
collection of metrics (‖.‖ϕ,v)v is adelic in the sense that it is induced by the
same integral model of X for almost all finite places v (See remark 3.5 in
section 3). The metric (‖.‖ϕ,v)v is called the canonical metric on E and the
metrized divisor Ē = (E, ‖.‖ϕ,v) is called the canonical compactification of
E with respect to the map ϕ. We refer to sections 2 and 3 of [10] for the
proofs of the existence and properties of the canonical metric. For example,
in section 3 of [10], canonical compactifications are studied in relation to a
higher dimensional analogue of Dirichlet unit’s theorem. Suppose that we
extend our notion of effective to metrized divisors D̄, imposing the extra
condition that the canonical section sD of our effective divisor D, has norm
‖sD‖v,sup ≤ 1 at every place. The Dirichlet property for metrized divisors
on arithmetic varieties, first considered by Moriwaki in [13], can be stated
as follows:

Definition 1.4. We say that the adelic metrized divisor Ē satisfies the
Dirichlet property if Ē is R-linearly equivalent to an effective metrized divi-
sor.

As a combination of proposition 1.2 and fact 1.1 we are able to get a
general result for compactified divisors associated to ample hyperbolic po-
larizations. At the same time, we obtain examples of adelic metrized divisors
without the Dirichlet property in families of K3 surfaces.

Proposition 1.5. Let (X,ϕ,E, α) be an ample hyperbolic polarized system
in the smooth surface X, with deg(ϕ) 6= α2. Then, the canonical compacti-
fication Ē do not satisfy the Dirichlet property. Also, for a pair of polarized
systems (X,ϕ,E, α), (X,ϕ−1, E′, α) with E+E′ ample, the canonically com-
pactified divisors Ē and Ē′ do not satisfy the Dirichlet property.

Corollary 1.6. In the family Sa,b, the compactified divisors Ē+, Ē− do not
have the Dirichlet property. In the family Sc, the compactified divisors Ēi
do not have the Dirichlet property.

As a follow up to this article, we would like to consider the real divisors
Ei, E

′
i, E+, E− and check whether or not the respective compactifications

Ēi, Ē
′
i, Ē+, Ē− are arithmetic pseudo-effective divisors [6, def. 3.17 (5)]. We

would like to define the arithmetic degree of the compactifications in the
same way is done for integrable divisors in section 3.1, and prove that the
arithmetic degrees are trivial.
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2. The geometric case

In this section we study some consequences of the polarization property for
dynamical systems on smooth projective surfaces. We start by introducing
ample and effective divisors with real coefficients.

2.1. Real divisors. Let X be a normal projective variety over a field K.
Suppose that Car(X) represents the group of Cartier divisors on X. A
Cartier R-divisor on X is an element of Car(X)R = Car(X) ⊗ R. The
injective map from the multiplicative group Rat(X)∗ of rational functions
on X into Car(X) extends to a map Rat(X)∗R = Rat(X)×⊗R ↪→ Car(X)R.
The principal Cartier divisor associated to f ∈ Rat(X)∗R will be denoted by
(f). We will refer to Cartier divisor simply as divisors on X and work with
the associated Weil divisors.

Definition 2.1. Two R-divisors D1 and D2 are called R-linearly equivalent,
denoted D1 ∼ D2, if they differ by a principal real divisor, this is, if there
exist f ∈ Rat(X)×R such that D1 −D2 = (f).

Remark 2.2. Let D1, D2, . . . , Dn ∈ Car(X)R, the number (D1, D2, . . . , Dd)
can be defined by linearity and the result depends only on the R-linear
equivalence class of the Di.

Definition 2.3. An R-divisor D is said to be ample (resp. effective) if D
can be written as D =

∑
aiDi with ai > 0 and the Di are ample (resp.

effective). We denote by Eff(X)R and Amp(X)R the cones of effective and
ample real divisors on X respectively.

2.2. Polarized dynamical systems. Let X be a projective, normal, geo-
metrically integral algebraic variety defined over a field K and ϕ : X −→ X
a finite, surjective self-map of X also defined over K. Suppose that E is a
nonzero R-divisor on X and for some real number α > 1, we have the linear
equivalence ϕ∗E ∼ αE. This situation will be called a polarized dynamical
system (X,ϕ,E, α) on X defined over the field K.

Remark 2.4. Consider a normal projective variety X of dimension d and a
polarized dynamical system (X,ϕ,E, α) defined over K. Let us denote by
(Ed) the self-intersection of E with itself n times. As long as deg(ϕ) 6= αd,
the identity

αd(Ed) = ((ϕ∗E)d) = deg(ϕ)(Ed),

gives self-intersection (Ed) = 0.

2.3. Dynamics on the family Sa,b of K3 surfaces. Consider the family
of Sa,b ⊂ P2×P2 studied by Silverman in [15]. The family Sa,b is determined
by the following two equations with coefficients in the field K,

3∑
i,j=1

ai,jxiyj =

3∑
i,j,k,l=1

bi,j,k,lxixkyjyl = 0.
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We can prove [16] that such equations determine K3 surfaces. The pro-
jections px and py represent double coverings of P2

K and determine rational
maps σx and σy in each of the members of the family. Suppose that σx, σy are
morphisms and we have denoted the pull-back divisors by Dx

n = p∗x{xn = 0}
and Dy

m = p∗y{ym = 0} respectively. The geometry of the family can be used

to determine the eigenvalues of (σy◦σx)±1∗ in the subspace of Car(Sa,b)R⊗R
generated by the divisor classes of Dx

n and Dy
m. Indeed for ϕ = σy ◦ σx and

β = 2 +
√

3, the real divisors

E+ = E+
mn = βDn

x −Dm
y , E− = E−mn = −Dn

x + βDm
y

will satisfy the two identities

ϕ∗E+ ∼ β2E+ and (ϕ−1)∗E− ∼ β2E−.

For values (a, b) of the parameters such that Sa,b is smooth, the rational
maps ϕ+ = ϕ = σy ◦ σx and ϕ− = ϕ−1 = σx ◦ σy define automorphisms
ϕ+, ϕ− : Sa,b −→ Sa,b polarized by the divisors E+, E− respectively. We

observe that the divisor E+ + E− = (1 +
√

3)(D1 + D2) is an ample R-
divisor on Sa,b.

2.4. K3 surfaces in P1 × P1 × P1. Consider a smooth projective variety
S defined by a (2, 2, 2) form in P1 × P1 × P1. For (x, y, z) ∈ P1 × P1 × P1,
the surface S = Sc can be viewed as zero locus of the polynomial

F (x, y, z) =
∑

il+jl=2, l=0,1,2

ci1,i2,i3,j1,j2,j3x
i1
0 x

j1
1 y

i2
0 y

j2
1 z

i3
0 z

j3
1 ,

where the coefficients ci1,i2,i3,j1,j2,j3 belong to a field K. Again by the re-
sults in [16], we have a K3 surface. If we write F (x, y, z) = x2

0F
x
0 (y, z) +

x0x1F
x
1 (y, z) + x2

1F
x
2 (y, z), the equation F (X,P2, P3) = 0 will have ex-

actly two solutions as long as (P2, P3) is not a solution of the system of
equations F x1 = F x2 = F x3 = 0. With such conditions, for every point
P = (P1, P2, P3) ∈ S(K), we can find P ′ = (P ′1, P2, P3) as the other solution
of F (X,P2, P3). In this way we have defined a rational map σ1 = σ2,3 : S −→
S. In similar way we can define rational maps σ2 = σ1,3 : S −→ S and
σ3 = σ1,2 : S −→ S. For values of the parameters (c) = (ci1,i2,i3,j1,j2,j3) such
that the three sets of curves {F x0 , F x1 , F x2 }, {F

y
0 , F

y
1 , F

y
2 }, {F z0 , F z1 , F z2 } have

no common points, the maps σ1, σ2 and σ3 are well defined automorphisms
of the surface S. We call this case, the generic case, and work from now
on with surfaces of the family S satisfying these conditions. Let {t0} be a
point in P1

K and pi : S −→ P1 the projection onto the i-th component. Let
us denote by Di for i = 1, 2, 3 the ample divisor Di = (pi)∗[t0] in S. For
a generic surface S, the Picard number is three and we will work with the
basis D = {D1, D2, D3} of Car(S)R. The intersection matrix J as well as
the action of the maps σi on elements of the basis were studied in [17], [4],

[1] and [2]. Suppose that we put β = 3+
√

5
2 , a = −3+

√
5

2 and b = −1+
√

5
2 , and
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name the divisors

E1 = [1, a, b]D E5 = [b, 1, a]D E3 = [a, b, 1]D

E4 = [1, b, a]D E2 = [a, 1, b]D E6 = [b, a, 1]D

The maps σ∗i,j,k = (σi ◦σj ◦σk)∗ = σ∗k ◦σ∗j ◦σ∗i share the same eigenvalues

{β3, β−3,−1} for {i, j, k} = {1, 2, 3}. The eigenvectors associated to the
different eigenvalues λ for σ∗i,j,k can be computed (in base D) as presented
in the table below.

Morphism λ = β3 λ = β−3 λ = −1
σ∗3,2,1 = σ∗1 ◦ σ∗2 ◦ σ∗3 E3 = [a, b, 1] E4 = [1, b, a] [1,−3, 1]

σ∗1,3,2 = σ∗2 ◦ σ∗3 ◦ σ∗1 E1 = [1, a, b] E2 = [a, 1, b] [1, 1,−3]

σ∗2,1.3 = σ∗3 ◦ σ∗1 ◦ σ∗2 E5 = [b, 1, a] E6 = [b, a, 1] [−3, 1, 1]

σ∗3,1,2 = σ∗2 ◦ σ∗1 ◦ σ∗3 E6 = [b, a, 1] E5 = [b, 1, a] [−3, 1, 1]

σ∗2,3,1 = σ∗1 ◦ σ∗3 ◦ σ∗2 E2 = [a, 1, b] E1 = [1, a, b] [1, 1,−3]

σ∗1,2,3 = σ∗3 ◦ σ∗2 ◦ σ∗1 E4 = [1, b, a] E3 = [a, b, 1] [1,−3, 1]

For instance, we have three pairs of polarized dynamical systems on S
given by a map ϕ : S −→ S and its inverse ϕ−1 : S −→ S, namely the pairs:

τ1 = [(S, σ3,2,1, E3, β
3) , (S, σ1,2,3, E4, β

3)],

τ2 = [(S, σ1,3,2, E1, β
3) , (S, σ2,3,1, E2, β

3)],

τ3 = [(S, σ2,1,3, E5, β
3) , (S, σ3,1,2, E6, β

3)].

We can check that the divisors E3 + E4, E1 + E2 and E5 + E6 are ample
real divisors divisors in Car(S)R. The pair of maps τ2 was work out in full
details in propositions 1.5 and 1.8 of [4].

2.5. Hyperbolic polarizations and automorphisms on algebraic sur-
faces. In this part we obtain some general intersection properties of real
divisors associated to a special type of polarizations: the hyperbolic polar-
izations.

Definition 2.5. A polarized dynamics (X,ϕ,E, α) defined over K on X will
be called hyperbolic polarized if there exist a real divisor 0 6= E′ ∈ Car(X)R
such that ϕ∗E′ ∼ 1

αE
′. Furthermore, if E + E′ is ample, we will say that

the algebraic dynamical system (X,ϕ,E, α) is ample hyperbolic polarized.

Remark 2.6. Let X be a normal projective surface defined over a field K and
(X,ϕ,E, α) a polarized dynamical system associated to an automorphism
ϕ ∈ Aut(X) over K. The system (X,ϕ,E, α) is hyperbolic polarized with
divisor E′ if and only if we can find a pair of polarized dynamical systems
(X,ϕ,E, α) and (X,ϕ−1, E′, α) associated to the map ϕ : X −→ X and its
inverse ϕ−1 : X −→ X. Again in this situation we will say that (X,ϕ,E, α)
is ample hyperbolic polarized if E + E′ is ample.
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Lemma 2.7. Let X be smooth projective surface, 0 6= D ∈ Eff(X)R a
nonzero real effective divisor on X, E ∈ Amp(X)R an ample real divisor
on X and ϕ : X −→ X a self-map. Then, there exist c > 0 such that
((ϕn)∗E,D) > c for all natural numbers n.

Proof. By definition of what it means to be effective and linearity, is enough
to do the proof for 0 6= D ∈ Eff(X), an integral effective divisor. Let E be
a finite sum E =

∑
αiEi with Ei ∈ Amp(X) ample and αi ∈ R. For some

N ∈ N we will have NEi is very ample for all i and ((ϕn)∗(NEi), D) ≥ 1
for all natural numbers n. Then

((ϕn)∗E,D) =
1

N

∑
i

αi((ϕ
n)∗(NEi), D) ≥

∑
i

αi
N

= c > 0,

which is the inequality we want to prove. �

Proposition 2.8. Let (X,ϕ,E, α) be polarized system on the smooth sur-
face X over the field K. Suppose that (X,ϕ,E, α) is ample hyperbolic po-
larized. Then, for every nonzero effective divisor 0 6= D ∈ Eff(X)R, we have
(E,D) > 0.

Proof. The definition of hyperbolic polarized provide us with a divisor E′ ∈
Car(X)R such that ϕ∗E = αE and ϕ∗E′ = α−1E′. The condition of ample
forces E + E′ ∈ Amp(X)R. Now, take a real effective divisor 0 6= D ∈
Eff(X)R, an integer n > 0 and compute:

αn(E,D) + α−n(E′, D) = ((ϕn)∗(E + E′), D) > c > 0,

where the last two inequalities are the result of applying 2.7 to the ample
divisor E + E′ and the effective divisor D. Since the inequality holds for
any n ∈ N, we must have (E,D) > 0. �

Corollary 2.9. Let (X,ϕ,E, α) be ample hyperbolic polarized system on the
smooth surface X over the field K. Then, if deg(ϕ) 6= α2, the divisor E is
not R-linearly equivalent to an effective divisors in X.

Proof. The condition deg(ϕ) 6= α2 for the polarized dynamical system
(X,ϕ,E, α) guarantees (E,E) = 0 after remark 2.4 (or fact 1.1 in the intro-
duction). As the self-intersection depends only on the R-linear equivalence
class of E, the result is an application of proposition 2.8 to D = E. �

Corollary 2.10. Let X be a smooth projective surface and ϕ ∈ Aut(X)
such that we have a hyperbolic polarization given by two polarized dynamical
systems (X,ϕ,E, α) and (X,ϕ−1, E′, α), with E + E′ is ample. Then, for
every real nonzero effective divisor D, the intersection numbers (E,D) and
(E′, D) are positive. In particular, the divisors E,E′ can not be R-linearly
equivalent to effective divisors.

Proof. We already now (E,D) > 0 by 2.8. Now, consider the inequality

αn(E,D) + α−n(E′, D) = ((ϕn)∗(E + E′), D) > c > 0

of proposition 2.8 for all n ∈ Z. This gives (E′, D) > 0 as well. �
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The following result is the second part of proposition 2.1.1 in [19] in case
that X is projective and we are in the presence of an ample hyperbolic
polarized dynamical system (X,ϕ,E, α), but E itself may not be ample.

Corollary 2.11. Let (X,ϕ,E, α) be ample hyperbolic polarized system on
the smooth surface X over the field K associate to an étale map ϕ : X −→ X
such that deg(ϕ) 6= α. Let us denote by KX the canonical divisor of X.
Then, for any real number m, the divisor mKX is either zero or not effective
on X. In particular, the Kodaira dimension κ(X) ≤ 0.

Proof. Since the map ϕ : X −→ X is étale, we have the linear equivalence
ϕ∗KX ∼ KX and

α(mKX , E) = (ϕ∗mKX , ϕ
∗E) = deg(ϕ)(mKX , E).

The condition deg(ϕ) 6= α gives (mKX , E) = 0 for all numbers m. We can
use proposition 2.8 to obtain that the divisor mKX is either zero or not
effective for m ∈ R. �

Example 2.12. For the family Sa,b of Wehler K3 surfaces discussed in sub-
section 2.3, we have ample hyperbolic polarizations associated to the pair of
polarized dynamics (Sa,b, ϕ

+, E+, β2) and (Sa,b, ϕ
−, E−, β2), for β = 2 +

√
3

and E+ +E− = (1 +
√

3)(D1 +D2). By corollary 2.10, the divisors E+, E−

are not effective on Sa,b.

Example 2.13. Let Sc be the family of K3 surfaces in P1×P1×P1 discussed

in subsection 2.4. For β = 3+
√

5
2 , the pairs τ1, τ2 and τ3 of inverse maps,

given by:
τ1 = [(S, σ3,2,1, E3, β

3) , (S, σ1,2,3, E4, β
3)],

τ2 = [(S, σ1,3,2, E1, β
3) , (S, σ2,3,1, E2, β

3)],

τ3 = [(S, σ2,1,3, E5, β
3) , (S, σ3,1,2, E6, β

3)].

provide us with ample hyperbolic polarizations in Sc. We can apply corollary
2.10 to obtain that Ei are not real effective divisors on Sc.

3. The arithmetic case

In this section we work with geometrically integral, normal projective
varieties X defined over a number field K and put metics on divisors, or
better, in their associated line bundles. We will denote by OK the ring of
integers of K and by MK the set of places of K.

Definition 3.1. Let X be a normal, projective variety of dimension d de-
fined over a number field K. For each place v ∈ MK , we associate to X
the v-adic analytic space Xan

v . The association X  Xan
v is functorial and

we have continuous maps πv : Xan
v −→ X. The analytic spaces Xan

v can be
described as follows:

(1) In the Archimedean case, σ = v : K ↪→ C, we put Kv = K ⊗σ C and
the analytic space Xv is just Xan

v = X ×σSpec(K) Spec(Kv).
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(2) In the non-Archimedean case the analytification Xan
v of X is the

Berkovich analytic space associated to X over the completion Kv of
K at the place v. These analytic spaces were introduced by Berkovich
in [3]. They represent topological ringed spaces with good properties
so we can do analysis on them. We refer to sections 1.2 and 1.3 of
[5] for a summary of their properties.

Definition 3.2. Let X be a variety over the number field K and L a line
bundle on X. A metric ‖.‖ on L is a collection of metrics (‖.‖v)v∈MK

,
where ‖.‖v is a metric on the analytification Lanv = π∗vL.

Definition 3.3. A metrized R-divisor D̄ will be a pair (D, ‖.‖), where D
is Cartier R-divisor on X and ‖.‖ is a metric on the associated line bun-
dle O(D). The v-adic Green function gv associated to D̄ is the function
gv : Xan

v \ |D| −→ R defined as gv(x) = − log ‖sD(x)‖v, where sD is the
canonical section of O(D).

A presentation of metrized R-divisors can be found in section 2 of [6]. For
instance, for f ∈ Rat(X)∗R, the principal R-divisor (f) naturally defines a

metrized R-divisor (̂f) when we put, at each place v of K, the absolute value
|.|v as associated metric on O((f))anv . On the other hand, in the presence of
a polarized dynamics (X,ϕ,E, α), we can consider a special kind of metric
on E related to the dynamics.

Definition 3.4. Let (X,ϕ,E, α) be a polarized dynamical system on X de-
fined over K, in such a way that ϕ∗E = αE + (f) for some f ∈ Rat(X)∗R.
Let ‖.‖ be a metric on E. For every place v we have a continuous function
λv,(E,‖.‖) : Xan

v −→ Kv such that

ϕ∗‖.‖v = |f |v‖.‖αvλv,(E,‖.‖).

The function λv,(E,‖.‖ϕ) ≡ 1, for almost all places v. The canonical metric
associated to the map ϕ is the unique metric ‖.‖ϕ on E giving the identity
λv,(E,‖.‖ϕ) ≡ 1, for all places v. In this sense we have the equality of metrized
divisors

ϕ∗(E, ‖.‖ϕ) = α(E, ‖.‖ϕ) + (̂f).

Remark 3.5. The existence and uniqueness of such metric is proved in section
2 of [10]. For each finite place v ∈ MK , it is possible to define a metrized
R-divisor Ēv on Xv = X×Spec(Kv) such that λĒv

= 1. Next, we can find a
model (XU , EU ) of (X,E) over a Zariski open U of Spec(OK) such that the
map ϕ extends to a map ϕU : XU −→ XU . The uniqueness of the metric ‖.‖v
ensures that the Green function gv is induced by the proper model (XU , EU )
for every v ∈ U , as described in section 1.3 of [5]. For places at infinity, the
work is done in propositions 2.1 and 2.2 of [10].

Remark 3.6. The metric ‖.‖X ,L,e induced on Lanv by a proper model (X ,L)
can be taken to be the metric such that ‖σ‖X ,L,e = 1 for a trivialization
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σ ∈ Γ(L,U) of L over U . The metrics obtained in this way are independent
of the choice of U and σ and are called algebraic metrics on L.

Definition 3.7. Let X be a variety over the number field K and L a line
bundle on X. A metric ‖.‖ on L will be called quasi-algebraic or adelic if it

is induced by the same model proper (X̃, L̃) of (X,Le), for almost all finite
places v of K.

As a result of the discussion in remark 3.5 the canonical metric associated
to a polarized dynamics (X,ϕ,E, α) is quasi-algebraic. The adelic metrized
R-divisor Ē = (E, ‖.‖ϕ) will be called the canonical compactification of the
divisor E with respect to the system (X,ϕ,E, α).

Example 3.8. We denote by Ē+ and Ē− the canonical compactification
of E+, E− with respect to the dynamical systems (Sa,b, ϕ

+, E+, α2) and
(Sa,b, ϕ

−, E−, α2) on the family Sa,b of K3 surfaces. In the same way we
denote by Ēi the canonical compactification of Ei with respect to the pairs
of polarized dynamics of example 2.13 on the family Sc.

Now we discuss the notion of effectivity for metrized divisors. Let D̄ be a
metrized R-divisor and sD the canonical section of O(D). If D is effective,
the function ‖sD‖v : Xan

v \ |D)| −→ R can be extended to a continuous
function on the compact space Xan

v , and we put for each place v ∈MK ,

‖sD‖v,sup = sup
P∈Xan

v

‖sD(P )‖v.

Definition 3.9. The arithmetic R-divisor D̄ is effective (D̄ � 0) if D is
effective and ‖sD‖v,sup ≤ 1 for all places v ∈ MK . We say that the adelic
metrized R-divisor D̄ satisfies the Dirichlet property if there exist an R-

rational function f ∈ Rat(X)∗R such that D̄ + (̂f) � 0.

The classical Dirichlet unit theorem on OK reflects the fact that on
X = Spec(OK), an arithmetic divisor with non-negative degree satisfies
the Dirichlet property. The study of higher dimensional analogues was in-
troduced by Moriwaki in [13] and continued in [10] and [11]. Positive and
negative answers has been given in some cases, while working with canoni-
cally compactified divisors.

Proposition 3.10. Let (X,ϕ,E, α) be an ample hyperbolic polarized system
in the smooth surface X, with deg(ϕ) 6= α2. Then, the canonical compacti-
fication Ē do not satisfy the Dirichlet property.

Proof. If Ē + (̂f) = D̄ � 0, then in particular D will be effective which
contradicts corollary 2.9. �

The same proof works for ample hyperbolic polarizations associated to
pairs of automorphisms on surfaces. Using corollary 2.10 we obtain:
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Proposition 3.11. For an ample hyperbolic polarized dynamics given by a
pair of systems (X,ϕ,E, α) and (X,ϕ−1, E′, α), the canonically compactified
divisors Ē, Ē′ do not satisfy the Dirichlet property.

Corollary 3.12. In the family Sa,b, the compactified divisors Ē+, Ē− do
not have the Dirichlet property. In the family Sc, the compactified divisors
Ēi, for i = 1, . . . , 6, do not have the Dirichlet property.

3.1. Arithmetic degree of compactified divisors. Suppose that X is
d-dimensional, projective, and geometrically integral normal variety over a
number field K. To be able to present the notion of arithmetic degree, we
are going to consider a special type of adelic metrized divisors D̄ on X: the
relatively nef divisors. We will say that the adelic R-divisor D̄ = (D, ‖.‖) is
relative nef if D is a nef divisor and the associated green function gv is of
(C0 ∪ PSH)-type for every place v as defined in section 2.1 of [14].

Definition 3.13. A divisor D̄ is integrable if it can written as the difference
of two relatively nef adelic divisors.

Example 3.14. Let (X,ϕ,E, α) be a polarized dynamical system onX with E
ample. As a consequence of lemma 3.1 in [10], the canonically compactified
divisor Ē is relatively nef.

We can have for the integrable divisor D̄ a notion of arithmetic degree

d̂eg(D̄d+1) = d̂egX(D̄d+1). The definition and properties of the arithmetic
degree are discussed in sections 2 and 4 of [14]. For example, as consequence
of proposition-definition 2.4.3 and proposition 4.5.4 in [14], the arithmetic
degree will satisfy the following properties:

(1) The degree d̂eg((λD̄)d+1) = λd+1d̂eg(D̄d+1) for all λ > 0,

(2) the degree d̂egX′((ϕ∗D̄)d+1) = d̂egX(D̄d+1) for a birational mor-
phism ϕ : X ′ −→ X of normal, projective and geometrically integral
varieties X,X ′ over K.

(3) the degree d̂eg((D̄ + (̂f))d+1) = d̂eg(D̄d+1) for f ∈ Rat(X)∗R.

For dynamical systems polarized by an integrable divisor E, we close
this presentation with an arithmetic analogue of remark 2.4 for integrable
divisors.

Proposition 3.15. Let K be a number field. Let ϕ : X −→ X be a birational
morphism such that (X,ϕ,E, α) is a polarized dynamical system defined
over K, with Ē integrable and dim(X) = d. Then the arithmetic degree

d̂eg((Ed+1, ‖.‖ϕ)) = d̂eg(Ēd+1
ϕ ) = 0.

Proof. Let us denote Ēϕ = (E, ‖.‖ϕ). Using the definition of polarized
dynamics and the properties of the arithmetic degree we obtain

0 = d̂eg((ϕ∗Ē)d+1
ϕ )− d̂eg((αĒϕ)d+1) = d̂eg(Ēd+1

ϕ )(1− αd+1),

and therefore d̂eg(Ēd+1
ϕ ) = 0. �
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