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Abstract. In this paper we adapt some techniques developed
for K3 surfaces, to study the geometry of a family of projective
varieties in P2

K × P2
K × P2

K defined as the intersection of a form
of degree (2, 2, 2) and a form of degree (1, 1, 1). Members of the
family will be equipped with dominant rational self-maps and we
will study the actions of those maps on divisors and compute the
first dynamical degrees of the composition of any pair.

1. Introduction

The study of a family of K3 surfaces presented as intersection of a
(2, 2)-form and a (1, 1)-form in P2×P2 goes back to Joachin Wehler [13].
In the family considered by Wehler, generic members were equipped
with a pair of non-commuting involutions σ1 and σ2 generating a group
of automorphisms isomorphic to Z2 ∗ Z2. The work of Silverman
in [10] provide us with canonical height functions associated to the
involutions σ1 and σ2 in generic members of Wehler’s family. Mo-
tivated by this work of Silverman, we study dynamics on a family
of varieties {XA,B}A,B in P2

K × P2
K × P2

K defined as the intersection
of a form of degree (2, 2, 2) and a form of degree (1, 1, 1). Individ-
ual members of the family {XA,B}A,B come equipped with (2 : 1)-
projections p1, p2, p3 : XA,B −→ P2 × P2 that generate involutions
σ1, σ2, σ3 on XA,B. In this situation however the maps σi for i = 1, 2, 3
are not morphisms of the whole X = XA,B, but only rational dominant
maps. Still it is possible to induce maps σ∗

i : Pic(X) −→ Pic(X) and
σ̃∗
i : NS(X)Q −→ NS(X)Q, on divisors modulo linear and numerical

equivalence. The computations with divisors in the case of three invo-
lutions are going to be similar to the computations on K3 surfaces of
type (2, 2, 2) in P1 ×P1 ×P1 studied by several authors, like Wang [12]
and Baragar [2], [3] and [4].
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The work with rational maps leads to consider different degrees or mea-
sures of the entropy of the map. The following degree associated to the
dynamics was initially studied by Arnold in [1], and particularly for
dominant rational maps by Silverman in [11].

Definition 1.1. Let X be an algebraic variety and φ : X 99K X a
dominant rational map. The first dynamical degree of φ is

δφ = lim sup
n→∞

ρ(φ̃n∗)1/n,

where ρ(φ̃n∗) represents the spectral radius or maximal eigenvalue of

the map φ̃n∗ : NS(X)Q −→ NS(X)Q.

It is also possible to extend the notion of polarization, with respect
to one rational map or, more general, in the sense of Kawaguchi [9],
associated to several rational maps:

Definition 1.2. Let X be a projective variety and φi : X 99K X
for i = 1, . . . , k dominant rational maps. We say that the system
(X, {φ1, . . . , φk},L, d) is a polarized dynamical system of k maps if

there exist an ample line bundle L ∈ Pic(X)⊗R such that
⊗k

i=1 φ
∗
iL ∼=

Ld for some d > k.

LetX be a element of the family {XA,B}A,B. By studying the actions
of the maps σ∗

1, σ
∗
2 and σ∗

3 on Pic(X)⊗R we will exhibit a polarization
for the system of three maps {σ1, σ2, σ3}. Also, under the condition
that the Picard number is the least possible value p(X) = 3, the first
dynamical degree of any of the maps σij = σi ◦ σj will be computed.
The computations will produce the same dynamical degree as the maps
on K3 surfaces [11], that is, the algebraic integer β = 7 + 4

√
3. The

key point for studying the actions of the involutions on divisors will be
lemma 2.3, that explains the action of push-forwards on pullbacks of
generators of Pic(P2×P2). The key ingredient in finding the dynamical
degree will be proposition 2.5 that describes the particular action in-
duced on divisors by dominant rational maps that represent involutions
in some open set.

2. Four dimensional Varieties with three involutions

Let LA ⊂ P2×P2×P2 be a family of varieties defined over a field K
by a single equation linear on each variable,

LA = {P ∈ P2 × P2 × P2 : L(x, y, z) =
2∑

i,j,k=0

ai,j,kxiyjzk = 0},
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where A = (aijk)0≤i,j,k≤2. A member of the family L comes equipped
with projections

p3 = pxy : L −→ P2 × P2,

p2 = pxz : L −→ P2 × P2,

p1 = pyz : L −→ P2 × P2,

and the Pic(L) ∼= Z3 from the embedding L ↪→ P2 × P2 × P2. Using
the adjunction formula we can get its canonical line bundle

ωL
∼= OP2×P2×P2(−3,−3,−3)⊗OP2×P2×P2(L) = OP2×P2×P2(−2,−2,−2).

By choosing a section Q = QA of OL(2, 2, 2) and consider the variety
X = Var(Q) we get a variety with trivial canonical divisor KX ∼ 0.
Besides, by the weak lefschetz theorem, we have an injective map Z3 ∼=
Pic(L) ↪→ Pic(X) and we will get three distinct classes even in NS(X)
and therefore a Picard number p(X) ≥ 3.
By varying the coefficients A,B one obtains a family {XA,B}A,B defined
in P2

K × P2
K × P2

K by equations

L(x, y, z) =
2∑

i,j,k=0

ai,j,kxiyjzk = 0,

Q(x, y, z) =
2∑

i,j,k,l,m,n=0

bi,j,k,l,m,nxixlyjymzkzn = 0,

where A = (aijk), B = (bi,j,k,l,m,n) and all indices are moving in the set
{0, 1, 2}. The projections p1, p2, p3 restricted to X represent generically
(2 : 1) coverings of P2×P2. Indeed when we fix two of the variables we
get the intersection on P2 of a quadric and a line, which is general, will
give two points Pi, P

′
i ∈ X for i = 1, 2, 3 and will determine involutions

σ1, σ2, σ3 : X 99K X. The involutions σi for i = 1, 2, 3, will not be in
general morphisms but just rational maps defined on certain open sets
Ui ⊂ X. We are interesting in studying the dynamics of the maps σi,
but first we should devote some time to get familiar with the geometry
of X = XA,B. We collect the coefficients of our variables using the
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following notation for i, j, k in the set {0, 1, 2}

Lx,y
k (x, y) =

2∑
i,j=0

ai,j,kxiyj, Qx,y
k,n(x, y) =

2∑
i,j,l,m=0

bi,j,k,l,m,nxixlyjym,

Lx,z
j (x, z) =

2∑
i,k=0

ai,j,kxizk, Qy,z
i,l (y, z) =

2∑
j,k,m,n=0

bi,j,k,l,m,nyjymzkzn,

Ly,z
i (y, z) =

2∑
j,k=0

ai,j,kyjzk, Qx,z
j,m(x, z) =

2∑
i,k,l,n=0

bi,j,k,l,m,nxixlzkzn.

Suppose, with the above notation in mind, that we want to study the
action of σ3 computing the solutions (z0, z1, 1) of the system

0 =Lx,y
0 z0 + Lx,y

1 z1 + Lx,y
2 ,

0 =Qx,y
0,0z

2
0 +Qx,y

1,1z
2
1 +Qx,y

2,2 +Qx,y
0,1z0z1 +Qx,y

0,2z0 +Qx,y
1,2z1,

assuming that Lx,y
1 ̸= 0 and replacing z1 =

−Lx,y
2 −Lx,y

0 z0
Lx,y
1

in the second

equation gives Gx,y
0 +Hx,y

0,2 z0 +Gx,y
2 z20 = 0 where,

Gx,y
0 = (Lx,y

1 )2Qx,y
2,2 − Lx,y

1 Lx,y
2 Qx,y

1,2 + (Lx,y
2 )2Qx,y

1,1 ,

Gx,y
2 = (Lx,y

1 )2Qx,y
0,0 − Lx,y

1 Lx,y
0 Qx,y

0,1 + (Lx,y
0 )2Qx,y

1,1 ,

Hx,y
0,2 = 2Lx,y

0 Lx,y
2 Qx,y

1,1 − Lx,y
0 Lx,y

1 Qx,y
1,2 − Lx,y

2 Lx,y
1 Qx,y

0,1 + (Lx,y
1 )2Qx,y

0,2 ,

and the map σ3 that sends (z0, z1, 1) 7→ (z′0, z
′
1, 1) will be defined un-

less all the three coefficients Gx,y
0 , Hx,y

0,2 , G
x,y
2 vanish. So, we are forced,

by a codimension checking, to work with rational maps σi : X 99K X
and our first task will be, to locate where are these maps well defined
morphisms.
Motivated by the above discussion we define for any permutation (i, j, k)
of (0, 1, 2) the (4, 4)-bi-homogeneous forms

Gx,y
k = (Lx,y

i )2Qx,y
j,j − Lx,y

i Lx,y
j Qx,y

i,j + (Lx,y
j )2Qx,y

i,i ,

Gy,z
k = (Ly,z

i )2Qy,z
j,j − Ly,z

i Ly,z
j Qy,z

i,j + (Ly,z
j )2Qy,z

i,i ,

Gx,z
k = (Lx,z

i )2Qx,z
j,j − Lx,z

i Lx,z
j Qx,z

i,j + (Lx,z
j )2Qx,z

i,i ,

Hx,y
i,j = 2Lx,y

i Lx,y
j Qx,y

kk − Lx,y
i Lx,y

k Qx,y
jk − Lx,y

j Lx,y
k Qx,y

ik + (Lx,y
k )2Qx,y

ij ,

Hx,z
i,j = 2Lx,z

i Lx,z
j Qx,z

kk − Lx,z
i Lx,z

k Qx,z
jk − Lx,z

j Lx,z
k Qx,z

ik + (Lx,z
k )2Qx,z

ij ,

Hy,z
i,j = 2Ly,z

i Ly,z
j Qy,z

kk − Ly,z
i Ly,z

k Qy,z
jk − Ly,z

j Ly,z
k Qy,z

ik + (Ly,z
k )2Qy,z

ij ,
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For any a, b, c ∈ P2
K , the fibres of the projections p1, p2 and p3 will be

defined as Xz
a,b = p−1

3 (a, b) = Lz
a,b ∩ Qz

a,b, X
x
b,c = p−1

1 (b, c) = Lx
b,c ∩ Qx

b,c

and Xy
a,c = p−1

2 (a, c) = Ly
a,c ∩Qy

a,c; where

Lz
a,b = {(a, b, z) ∈ P2 × P2 × P2 : L(a, b, z) = 0},

Qz
a,b = {(a, b, z) ∈ P2 × P2 × P2 : Q(a, b, z) = 0

Lx
b,c = {(x, b, c) ∈ P2 × P2 × P2 : L(x, b, c) = 0},
Qx

b,c = {(x, b, c) ∈ P2 × P2 × P2 : Q(x, b, c) = 0

Ly
a,c = {(a, y, c) ∈ P2 × P2 × P2 : L(a, y, c) = 0},

Qy
a,c = {(a, y, c) ∈ P2 × P2 × P2 : Q(a, y, c) = 0.

Definition 2.1. We say that a fibre Xz
a,b, X

x
b,c or Xy

a,c is degenerate if
it has positive dimension.

If the fibres Xz
a,b, X

x
b,c or X

y
a,c are non-degenerate at (a, b, c), they will

consist of two points and the maps σ1, σ2 and σ3 will be well defined
morphisms at (a, b, c) ∈ X. Following the outline of [6] we have the
following result characterizing the degenerate fibres.

Proposition 2.2. Let [a, b, c] ∈ X.

(1) Xz
a,b is degenerate if and only if

Gx,y
0 (a, b) = Gx,y

1 (a, b) = Gx,y
2 (a, b) = Hx,y

0,1 (a, b) = Hx,y
0,2 (a, b) = Hx,y

1,2 (a, b) = 0.

(2) Xy
a,c is degenerate if and only if

Gx,z
0 (a, c) = Gx,z

1 (a, c) = Gx,z
2 (a, c) = Hx,z

0,1 (a, c) = Hx,z
0,2 (a, c) = Hx,z

1,2 (a, c) = 0.

(3) Xx
b,c is degenerate if and only if

Gy,z
0 (b, c) = Gy,z

1 (b, c) = Gy,z
2 (b, c) = Hy,z

0,1 (b, c) = Hy,z
0,2 (b, c) = Hy,z

1,2 (b, c) = 0.

Proof. The proof is identical to the proof of proposition 1.4 in [6].
We do the proof of (1). When we substitute z0 = (L − Lx,y

1 z1 −
Lx,y

2 z2)/L
x,y
0 , z1 = (L − Lx,y

0 z0 − Lx,y
2 z2)/L

x,y
1 and z2 = (L − Lx,y

1 z1 −
Lx,y

0 z0)/L
x,y
2 into Q respectively we get formulas:

(Lx,y
0 )2Q(x, y, z) ≡ Gx,y

2 z21 +Hx,y
1,2 z1z2 +Gx,y

1 z22 (modL(x, y, z)),

(Lx,y
1 )2Q(x, y, z) ≡ Gx,y

2 z20 +Hx,y
0,2 z0z2 +Gx,y

0 z22 (modL(x, y, z)),

(Lx,y
2 )2Q(x, y, z) ≡ Gx,y

1 z20 +Hx,y
0,1 z0z1 +Gx,y

0 z21 (modL(x, y, z)).

Now, the proof is divided into two parts, depending on whether or not
for the point [a, b, c] ∈ P2 × P2 × P2 we have L(a, b, z) ≡ 0.
If L(a, b, z) ≡ 0, then Xz

a,b = Qz
a,b and the fibre is degenerate. In this

case La,b
0 = La,b

1 = La,b
2 = 0 will force Hx,y

i,j (a, b) = Gx,y
k (a, b) = 0 and

the proof is finished.
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If L(a, b, z) ̸= 0, one of the Lx,y
i (a, b) ̸= 0 and the fact that Gx,y

0 (a, b) =
Gx,y

1 (a, b) = Gx,y
2 (a, b) = Hx,y

0,1 (a, b) = Hx,y
0,2 (a, b) = Hx,y

1,2 (a, b) = 0 forces
Q(a, b, z) ≡ 0 (modL(a, b, z)) and hence Xz

a,b is degenerate containing
the entire line Lz

a,b.
If L(a, b, z) ̸= 0 and the fibre Xz

a,b is degenerate we must have Lz
a,b ⊂

Qz
a,b. We are going to proof that Gx,y

0 (a, b) = Gx,y
1 (a, b) = Gx,y

2 (a, b) =
Hx,y

0,1 (a, b) = Hx,y
0,2 (a, b) = Hx,y

1,2 (a, b) = 0. First let’s do Gx,y
0 (a, b) = 0.

If Lx,y
1 (a, b) = Lx,y

2 (a, b) = 0, this follows from the definition, oth-
erwise (0, Lx,y

2 (a, b),−Lx,y
1 (a, b)) ∈ Lz

a,b and therefore must belong to
Qz

a,b, when we evaluate we get

0 = Qx,y
1,1(a, b)(L

x,y
2 (a, b))2 −Qx,y

1,2L
x,y
2 (a, b)Lx,y

1 (a, b) +Qx,y
2,2(L

x,y
1 (a, b))2

So Gx,y
0 (a, b) = 0. In a similar way we do Gx,y

1 (a, b) = Gx,y
2 (a, b) = 0.

The substitution of the results Gx,y
i (a, b) = 0 in the equations and

evaluations at x = a, y = b will give

Hx,y
1,2 (a, b)z1z2 = Hx,y

0,2 (a, b)z0z2 = Hx,y
1,0 (a, b)z1z0 = 0

for all points (z0, z1, z2) ∈ Lz(a, b). If Lz(a, b) is the line z1 = 0, then
Lx,y

0 (a, b) = Lx,y
2 (a, b) = 0 and Hx,y

1,2 (a, b) = 0 using the definition.
If Lz(a, b) is the line z2 = 0, then Lx,y

1 (a, b) = Lx,y
2 (a, b) = 0 and

Hx,y
1,2 (a, b) = 0 will be again equal to zero. Otherwise if Lz

a,b is none of
the lines z1 = 0 or z2 = 0, then Hx,y

1,2 (a, b) = 0 from the previous line.
The other cases for Hx,y

i,j (a, b) = 0 are solved similarly. �
We can now define open sets U1, U2, U3 in such a way that the dom-

inant rational maps σi : X 99K X are bijective morphisms

σi : Ui −→ Ui.

U1 = X − {(a, b, c) ∈ X : Gy,z
0 (b, c) = Gy,z

1 (b, c) = Gy,z
2 (b, c) = 0

Hy,z
0,1 (b, c) = Hy,z

0,2 (b, c) = Hy,z
1,2 (b, c) = 0},

U2 = X − {(a, b, c) ∈ X : Gx,z
0 (a, c) = Gx,z

1 (a, c) = Gx,z
2 (a, c) = 0

Hx,z
0,1 (a, c) = Hx,z

0,2 (a, c) = Hx,z
1,2 (a, c) = 0},

U3 = X − {(a, b, c) ∈ X : Gx,y
0 (a, b) = Gx,y

1 (a, b) = Gx,y
2 (a, b) = 0

Hx,y
0,1 (a, b) = Hx,y

0,2 (a, b) = Hx,y
1,2 (a, b) = 0}.

The maps σ1, σ2, σ3 induce maps on divisors: Let’s consider Y a closed

subvariety of codimension one and σ∗
i Y = σ−1

i Y , the Zariski closure
of the pre-image. In this way we induce maps on Weil divisors, that
respect linear and numerical equivalence and descend to maps

σ∗
i : Pic(X) −→ Pic(X) σ̃∗

i : NS(X)Q −→ NS(X)Q.
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To study the action of the σ∗
i on Pic(X) we denote by H,H ′ hyperplane

sections representing the two fundamental classes in Pic(P2 × P2),

H = {((a0 : a1 : a2), (b0 : b1 : b2)) ∈ P2 × P2 : a0 = 0},
H ′ = {((a0 : a1 : a2), (b0 : b1 : b2)) ∈ P2 × P2 : b0 = 0}.

and the divisors Dx, Dy, Dz on X defined by:

Dx = {P ∈ X : x0 = 0}, Dy = {P ∈ X : y0 = 0}, Dz = {P ∈ X : z0 = 0}.
The pullbacks ofH,H ′ by the different projections give back theDx, Dy, Dz,

p∗xyH = p∗3H = Dx, p∗xyH
′ = p∗3H

′ = Dy,

p∗xzH = p∗2H = Dx, p∗xzH
′ = p∗2H

′ = Dz,

p∗yzH = p∗1H = Dy, p∗yzH
′ = p∗1H

′ = Dz.

Lemma 2.3. We have the following equivalences of divisors in div(X):

(a) p1∗p
∗
2H ∼ 4H + 4H ′; (b) p2∗p

∗
1H ∼ 4H + 4H ′;

(c) p3∗p
∗
1H

′ ∼ 4H + 4H ′.

Proof. The prove of all parts will be analogous and straightforward
from the definition of H,H ′ and the pi’s. Let’s see for example the
proof of (a). The pull-back p∗2H = {P ∈ X : x0 = 0} is given by the
two equations

Ly,z
1 x1 + Ly,z

2 x2 = 0, Qy,z
1,1x

2
1 +Qy,z

1,2x1x2 +Qy,z
2,2x

2
2 = 0.

When we project onto (y, z) we eliminate x1, x2 and get the equation

Gy,z
0 = (Ly,z

1 )2Qy,z
2,2 − Ly,z

1 Ly,z
2 Qy,z

1,2 + (Ly,z
2 )2Qy,z

1,1 = 0.

where Gy,z
0 is a (4, 4)-bihomogeneous form in y and z, and therefore

p1∗p
∗
2H ∼ 4H + 4H ′. �

Applying lemma 2.3 we obtain the push-forwards:

p1∗(Dx) ∼ 4H+4H ′, p2∗(Dy) ∼ 4H+4H ′, p3∗(Dz) ∼ 4H+4H ′,

and the action of the σ∗
i ’s on the divisors Dx, Dy, Dz:

σ∗
1(Dx) = p∗1p1∗Dx −Dx ∼ 4Dy + 4Dz −Dx,

σ∗
1(Dy) = σ∗

1p
∗
1H = (p1 ◦ σ1)

∗H = Dy,

σ∗
1(Dz) = σ∗

1p
∗
1H

′ = (p1 ◦ σ1)
∗H ′ = Dz,

σ∗
2(Dx) = σ2p

∗
2H = (p2 ◦ σ2)

∗H ′ = Dx,

σ∗
2(Dy) = p∗2p2∗Dy −Dy ∼ 4Dx + 4Dz −Dy,

σ∗
2(Dz) = σ∗

2p
∗
2H

′ = (p2 ◦ σ2)
∗H ′ = Dz,

σ∗
3(Dx) = σ∗

3p
∗
3H = (p3 ◦ σ3)

∗H = Dx,

σ∗
3(Dy) = σ∗

3p
∗
3H

′ = (p3 ◦ σ3)
∗H ′ = Dy,
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σ∗
3(Dz) = p∗3p3∗Dz −Dz ∼ 4Dx + 4Dy −Dz.

Using the actions of the σ∗
i we can get a polarizations by a very ample

line bundle for the system of involutions σ1, σ2, σ3.

Proposition 2.4. Suppose that rx, ry, rz are positive real numbers and
we have the polarization by three maps∑

i

σ∗
i (rxDx + ryDy + rzDz) ∼ d(rxDx + ryDy + rzDz),

in Pic(X)⊗ R. Then d = 9 and rx = ry = rz = 1.

Proof. When we add up the actions of σ∗
i on rxDx + ryDy + rzDz, and

equal that to d(rxDx+ ryDy+ rzDz) for some d > 3, we get the system
of linear equations:

rx + 4ry + 4rz = drx,

4rx + ry + 4rz = dry,

4rx + 4ry + rz = drz.

The determinant is (9 − d)(3 + d)3 and the value of d = 9 gives rx =
ry = rz = 1. �
Proposition 2.5. The maps σi and σij = σi ◦ σj, for i, j ∈ {0, 1, 2},
satisfy the properties:

(1) (σi ◦ σj)
∗ = σ∗

j ◦ σ∗
i ,

(2) (σn
ij)

∗ = (σ∗
ij)

n.

Proof. In general, given two rational maps τ : X 99K X and τ ′ : X 99K
X defining involutions τ : Uτ −→ Uτ and τ ′ : Uτ ′ −→ Uτ ′ on open sets
Uτ and Uτ ′ respectively, we will have (τ ◦ τ ′)∗ = τ ′∗ ◦ τ ∗. Let Y be an

irreducible subvariety. If P ∈ τ(Y ∩ Uτ ) ∩ Uτ ′ , there exist a sequence
Pn → P , with Pn ∈ τ(Y ∩ Uτ ) ∩ Uτ ′ . Therefore τ ′(Pn) → τ ′(P ) and

τ ′(P ) ∈ τ ′(τ(Y ∩ Uτ )) ∩ Uτ ′). In other words τ ′(τ(Y ∩ Uτ ) ∩ Uτ ′) ⊂
τ ′(τ(Y ∩ Uτ ) ∩ Uτ ′), so this two sets must be equal and (τ ◦ τ ′)∗ =
τ ′∗ ◦ τ ∗. For the first part of the theorem we take σi = τ and σj = τ ′.
For the second part we proceed by induction and use the result to proof
the induction step. If we suppose that (σn

ij)
∗ = (σ∗

ij)
n is true, then

(σ∗
ij)

n+1 = σ∗
ij((σ

∗
ij)

n) = σ∗
ij((σ

n
ij)

∗) By our result above with τ = σij

and τ ′ = σn
ij, the last equals to (σn+1

ij )∗. �
2.1. Computation of dynamical degree. In this subsection we study
the action induced by the maps σij = σi ◦ σj on the subspace V =
Span(Dx, Dy, Dz) of Pic(X)⊗ R. As an application we will be able to
get the dynamical degree of those maps for members of the family with
Picard number p(X) = 3.
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Theorem 2.6. Let σij be the rational dominant map σi◦σj : X 99K X.
Let V be the subspace of Pic(X)⊗R spanned by Dx, Dy, Dz and consider
the action of σ∗n

ij : V −→ V . The eigenvalues of σ∗n
ij |V belong to the

set {1, βn, β′n}, where β = 7 + 4
√
3 and β′ = 1

β
.

Proof. The action of the maps σ∗
12, σ∗

31, σ∗
31, σ∗

32, σ∗
13 and σ∗

23 with
respect to that base {Dx, Dy, Dz} is given respectively by the matrices

σ∗
12 =

 −1 −4 0
4 15 0
4 20 1

 σ∗
13 =

 15 0 4
20 1 4
−4 0 −1


σ∗
12 =

 15 4 0
−4 −1 0
20 4 1

 σ∗
23 =

 1 20 4
0 15 4
0 −4 −1


σ∗
31 =

 −1 0 −4
4 1 20
4 0 15

 σ∗
32 =

 1 4 20
0 −1 −4
0 4 15


With the help of SAGE we find that the six matrices are sharing the
same characteristic polynomial p = −(λ− 1)(λ2 − 14λ+ 1). The roots
of p(λ) are {1, β, β′} with β = 7+ 4

√
3 and β′ = 1/β, therefore all the

six matrices are diagonalizable and the eigenvalues of the the powers
are from the set {1, βn, β′n}. �
Corollary 2.7. Suppose that the Picard number p(X) = 3, then the
first dynamical degree δσij

of σij is δσij
= β.

Proof. The divisorsDx, Dy, Dz represent three distinct classes inNS(X)Q.
If the Picard number p(X) = 3, then we have NS(X)Q ∼= VQ. The first
dynamical degree of any of the maps σij is:

δσij
= lim sup

n→∞
ρ((σn

ij)
∗)1/n = lim sup

n→∞
ρ((σ∗

ij)
n)1/n = lim sup

n→∞
(βn)1/n = β,

where the last step comes from proposition 2.5. �
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