GEOMETRY OF FOUR-FOLDS WITH THREE NON-COMMUTING INVOLUTIONS

JORGE PINEIRO

Abstract

In this paper we adapt some techniques developed for K3 surfaces, to study the geometry of a family of projective varieties in $\mathbb{P}_{K}^{2} \times \mathbb{P}_{K}^{2} \times \mathbb{P}_{K}^{2}$ defined as the intersection of a form of degree $(2,2,2)$ and a form of degree $(1,1,1)$. Members of the family will be equipped with dominant rational self-maps and we will study the actions of those maps on divisors and compute the first dynamical degrees of the composition of any pair.

1. Introduction

The study of a family of K3 surfaces presented as intersection of a $(2,2)$-form and a $(1,1)$-form in $\mathbb{P}^{2} \times \mathbb{P}^{2}$ goes back to Joachin Wehler [13]. In the family considered by Wehler, generic members were equipped with a pair of non-commuting involutions σ_{1} and σ_{2} generating a group of automorphisms isomorphic to $\mathbb{Z}_{2} * \mathbb{Z}_{2}$. The work of Silverman in [10] provide us with canonical height functions associated to the involutions σ_{1} and σ_{2} in generic members of Wehler's family. Motivated by this work of Silverman, we study dynamics on a family of varieties $\left\{X^{A, B}\right\}_{A, B}$ in $\mathbb{P}_{K}^{2} \times \mathbb{P}_{K}^{2} \times \mathbb{P}_{K}^{2}$ defined as the intersection of a form of degree $(2,2,2)$ and a form of degree ($1,1,1$). Individual members of the family $\left\{X^{A, B}\right\}_{A, B}$ come equipped with (2:1)projections $p_{1}, p_{2}, p_{3}: X^{A, B} \longrightarrow \mathbb{P}^{2} \times \mathbb{P}^{2}$ that generate involutions $\sigma_{1}, \sigma_{2}, \sigma_{3}$ on $X^{A, B}$. In this situation however the maps σ_{i} for $i=1,2,3$ are not morphisms of the whole $X=X^{A, B}$, but only rational dominant maps. Still it is possible to induce maps $\sigma_{i}^{*}: \operatorname{Pic}(X) \longrightarrow \operatorname{Pic}(X)$ and $\tilde{\sigma}_{i}^{*}: N S(X)_{\mathbb{Q}} \longrightarrow N S(X)_{\mathbb{Q}}$, on divisors modulo linear and numerical equivalence. The computations with divisors in the case of three involutions are going to be similar to the computations on K3 surfaces of type $(2,2,2)$ in $\mathbb{P}_{1} \times \mathbb{P}_{1} \times \mathbb{P}_{1}$ studied by several authors, like Wang [12] and Baragar [2], [3] and [4].

[^0]The work with rational maps leads to consider different degrees or measures of the entropy of the map. The following degree associated to the dynamics was initially studied by Arnold in [1], and particularly for dominant rational maps by Silverman in [11].

Definition 1.1. Let X be an algebraic variety and $\varphi: X \rightarrow X a$ dominant rational map. The first dynamical degree of φ is

$$
\delta_{\varphi}=\limsup _{n \rightarrow \infty} \rho\left(\widetilde{\varphi^{n *}}\right)^{1 / n},
$$

where $\rho\left(\widetilde{\varphi^{n *}}\right)$ represents the spectral radius or maximal eigenvalue of the map $\widetilde{\varphi^{n *}}: N S(X)_{\mathbb{Q}} \longrightarrow N S(X)_{\mathbb{Q}}$.

It is also possible to extend the notion of polarization, with respect to one rational map or, more general, in the sense of Kawaguchi [9], associated to several rational maps:

Definition 1.2. Let X be a projective variety and $\varphi_{i}: X \rightarrow X$ for $i=1, \ldots, k$ dominant rational maps. We say that the system $\left(X,\left\{\varphi_{1}, \ldots, \varphi_{k}\right\}, \mathcal{L}, d\right)$ is a polarized dynamical system of k maps if there exist an ample line bundle $\mathcal{L} \in \operatorname{Pic}(X) \otimes \mathbb{R}$ such that $\bigotimes_{i=1}^{k} \varphi_{i}^{*} \mathcal{L} \cong$ \mathcal{L}^{d} for some $d>k$.

Let X be a element of the family $\left\{X^{A, B}\right\}_{A, B}$. By studying the actions of the maps $\sigma_{1}^{*}, \sigma_{2}^{*}$ and σ_{3}^{*} on $\operatorname{Pic}(X) \otimes \mathbb{R}$ we will exhibit a polarization for the system of three maps $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$. Also, under the condition that the Picard number is the least possible value $p(X)=3$, the first dynamical degree of any of the maps $\sigma_{i j}=\sigma_{i} \circ \sigma_{j}$ will be computed. The computations will produce the same dynamical degree as the maps on K3 surfaces [11], that is, the algebraic integer $\beta=7+4 \sqrt{3}$. The key point for studying the actions of the involutions on divisors will be lemma 2.3, that explains the action of push-forwards on pullbacks of generators of $\operatorname{Pic}\left(\mathbb{P}^{2} \times \mathbb{P}^{2}\right)$. The key ingredient in finding the dynamical degree will be proposition 2.5 that describes the particular action induced on divisors by dominant rational maps that represent involutions in some open set.

2. Four dimensional Varieties with three involutions

Let $\mathbf{L}^{A} \subset \mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}$ be a family of varieties defined over a field K by a single equation linear on each variable,

$$
\mathbf{L}^{A}=\left\{P \in \mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}: L(x, y, z)=\sum_{i, j, k=0}^{2} a_{i, j, k} x_{i} y_{j} z_{k}=0\right\}
$$

where $A=\left(a_{i j k}\right)_{0 \leq i, j, k \leq 2}$. A member of the family \mathbf{L} comes equipped with projections

$$
\begin{aligned}
& p_{3}=p_{x y}: \mathbf{L} \longrightarrow \mathbb{P}^{2} \times \mathbb{P}^{2}, \\
& p_{2}=p_{x z}: \mathbf{L} \longrightarrow \mathbb{P}^{2} \times \mathbb{P}^{2}, \\
& p_{1}=p_{y z}: \mathbf{L} \longrightarrow \mathbb{P}^{2} \times \mathbb{P}^{2},
\end{aligned}
$$

and the $\operatorname{Pic}(\mathbf{L}) \cong \mathbb{Z}^{3}$ from the embedding $\mathbf{L} \hookrightarrow \mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}$. Using the adjunction formula we can get its canonical line bundle
$\omega_{\mathbf{L}} \cong \mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}}(-3,-3,-3) \otimes \mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}}(\mathbf{L})=\mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}}(-2,-2,-2)$.
By choosing a section $Q=Q^{A}$ of $\mathcal{O}_{\mathbf{L}}(2,2,2)$ and consider the variety $X=\operatorname{Var}(Q)$ we get a variety with trivial canonical divisor $K_{X} \sim 0$. Besides, by the weak lefschetz theorem, we have an injective map $\mathbb{Z}^{3} \cong$ $\operatorname{Pic}(L) \hookrightarrow \operatorname{Pic}(X)$ and we will get three distinct classes even in $N S(X)$ and therefore a Picard number $p(X) \geq 3$.
By varying the coefficients A, B one obtains a family $\left\{X^{A, B}\right\}_{A, B}$ defined in $\mathbb{P}_{K}^{2} \times \mathbb{P}_{K}^{2} \times \mathbb{P}_{K}^{2}$ by equations

$$
\begin{aligned}
& L(x, y, z)=\sum_{i, j, k=0}^{2} a_{i, j, k} x_{i} y_{j} z_{k}=0 \\
& Q(x, y, z)=\sum_{i, j, k, l, m, n=0}^{2} b_{i, j, k, l, m, n} x_{i} x_{l} y_{j} y_{m} z_{k} z_{n}=0
\end{aligned}
$$

where $A=\left(a_{i j k}\right), B=\left(b_{i, j, k, l, m, n}\right)$ and all indices are moving in the set $\{0,1,2\}$. The projections p_{1}, p_{2}, p_{3} restricted to X represent generically (2:1) coverings of $\mathbb{P}^{2} \times \mathbb{P}^{2}$. Indeed when we fix two of the variables we get the intersection on \mathbb{P}^{2} of a quadric and a line, which is general, will give two points $P_{i}, P_{i}^{\prime} \in X$ for $i=1,2,3$ and will determine involutions $\sigma_{1}, \sigma_{2}, \sigma_{3}: X \rightarrow X$. The involutions σ_{i} for $i=1,2,3$, will not be in general morphisms but just rational maps defined on certain open sets $U_{i} \subset X$. We are interesting in studying the dynamics of the maps σ_{i}, but first we should devote some time to get familiar with the geometry of $X=X^{A, B}$. We collect the coefficients of our variables using the
following notation for i, j, k in the set $\{0,1,2\}$

$$
\begin{aligned}
L_{k}^{x, y}(x, y) & =\sum_{i, j=0}^{2} a_{i, j, k} x_{i} y_{j},
\end{aligned} \quad Q_{k, n}^{x, y}(x, y)=\sum_{i, j, l, m=0}^{2} b_{i, j, k, l, m, n} x_{i} x_{l} y_{j} y_{m}, ~(x, z)=\sum_{i, k=0}^{2} a_{i, j, k} x_{i} z_{k}, \quad Q_{i, l}^{y, z}(y, z)=\sum_{j, k, m, n=0}^{2} b_{i, j, k, l, m, n} y_{j} y_{m} z_{k} z_{n}, ~=\sum_{j, k=0}^{x, z} a_{i, j, k} y_{j} z_{k}, \quad Q_{j, m}^{x, z}(x, z)=\sum_{i, k,,, n=0}^{2} b_{i, j, k, l, m, n} x_{i} x_{l} z_{k} z_{n} .
$$

Suppose, with the above notation in mind, that we want to study the action of σ_{3} computing the solutions $\left(z_{0}, z_{1}, 1\right)$ of the system

$$
\begin{aligned}
& 0=L_{0}^{x, y} z_{0}+L_{1}^{x, y} z_{1}+L_{2}^{x, y} \\
& 0=Q_{0,0}^{x, y} z_{0}^{2}+Q_{1,1}^{x, y} z_{1}^{2}+Q_{2,2}^{x, y}+Q_{0,1}^{x, y} z_{0} z_{1}+Q_{0,2}^{x, y} z_{0}+Q_{1,2}^{x, y} z_{1},
\end{aligned}
$$

assuming that $L_{1}^{x, y} \neq 0$ and replacing $z_{1}=\frac{-L_{2}^{x, y}-L_{0}^{x, y} z_{0}}{L_{1}^{x, y}}$ in the second equation gives $G_{0}^{x, y}+H_{0,2}^{x, y} z_{0}+G_{2}^{x, y} z_{0}^{2}=0$ where,

$$
\begin{gathered}
G_{0}^{x, y}=\left(L_{1}^{x, y}\right)^{2} Q_{2,2}^{x, y}-L_{1}^{x, y} L_{2}^{x, y} Q_{1,2}^{x, y}+\left(L_{2}^{x, y}\right)^{2} Q_{1,1}^{x, y}, \\
G_{2}^{x, y}=\left(L_{1}^{x, y}\right)^{2} Q_{0,0}^{x, y}-L_{1}^{x, y} L_{0}^{x, y} Q_{0,1}^{x, y}+\left(L_{0}^{x, y}\right)^{2} Q_{1,1}^{x, y}, \\
H_{0,2}^{x, y}=2 L_{0}^{x, y} L_{2}^{x, y} Q_{1,1}^{x, y}-L_{0}^{x, y} L_{1}^{x, y} Q_{1,2}^{x, y}-L_{2}^{x, y} L_{1}^{x, y} Q_{0,1}^{x, y}+\left(L_{1}^{x, y}\right)^{2} Q_{0,2}^{x, y},
\end{gathered}
$$

and the map σ_{3} that sends $\left(z_{0}, z_{1}, 1\right) \mapsto\left(z_{0}^{\prime}, z_{1}^{\prime}, 1\right)$ will be defined unless all the three coefficients $G_{0}^{x, y}, H_{0,2}^{x, y}, G_{2}^{x, y}$ vanish. So, we are forced, by a codimension checking, to work with rational maps $\sigma_{i}: X \rightarrow X$ and our first task will be, to locate where are these maps well defined morphisms.
Motivated by the above discussion we define for any permutation (i, j, k) of $(0,1,2)$ the (4,4)-bi-homogeneous forms

$$
\begin{gathered}
G_{k}^{x, y}=\left(L_{i}^{x, y}\right)^{2} Q_{j, j}^{x, y}-L_{i}^{x, y} L_{j}^{x, y} Q_{i, j}^{x, y}+\left(L_{j}^{x, y}\right)^{2} Q_{i, i}^{x, y}, \\
G_{k}^{y, z}=\left(L_{i}^{y, z}\right)^{2} Q_{j, j}^{y, z}-L_{i}^{y, z} L_{j}^{y, z} Q_{i, j}^{y, z}+\left(L_{j}^{y, z}\right)^{2} Q_{i, i}^{y, z}, \\
G_{k}^{x, z}=\left(L_{i}^{x, z}\right)^{2} Q_{j, j}^{x, z}-L_{i}^{x, z} L_{j}^{x, z} Q_{i, j}^{x, z}+\left(L_{j}^{x, z}\right)^{2} Q_{i, i}^{x, z}, \\
H_{i, j}^{x, y}=2 L_{i}^{x, y} L_{j}^{x, y} Q_{k k}^{x, y}-L_{i}^{x, y} L_{k}^{x, y} Q_{j k}^{x, y}-L_{j}^{x, y} L_{k}^{x, y} Q_{i k}^{x, y}+\left(L_{k}^{x, y}\right)^{2} Q_{i j}^{x, y}, \\
H_{i, j}^{x, z}=2 L_{i}^{x, z} L_{j}^{x, z} Q_{k k}^{x, z}-L_{i}^{x, z} L_{k}^{x, z} Q_{j k}^{x, z}-L_{j}^{x, z} L_{k}^{x, z} Q_{i k}^{x, z}+\left(L_{k}^{x, z}\right)^{2} Q_{i j}^{x, z}, \\
H_{i, j}^{y, z}=2 L_{i}^{y, z} L_{j}^{y, z} Q_{k k}^{y, z}-L_{i}^{y, z} L_{k}^{y, z} Q_{j k}^{y, z}-L_{j}^{y, z} L_{k}^{y, z} Q_{i k}^{y, z}+\left(L_{k}^{y, z}\right)^{2} Q_{i j}^{y, z},
\end{gathered}
$$

For any $a, b, c \in \mathbb{P}_{K}^{2}$, the fibres of the projections p_{1}, p_{2} and p_{3} will be defined as $X_{a, b}^{z}=p_{3}^{-1}(a, b)=L_{a, b}^{z} \cap Q_{a, b}^{z}, X_{b, c}^{x}=p_{1}^{-1}(b, c)=L_{b, c}^{x} \cap Q_{b, c}^{x}$ and $X_{a, c}^{y}=p_{2}^{-1}(a, c)=L_{a, c}^{y} \cap Q_{a, c}^{y}$; where

$$
\begin{gathered}
L_{a, b}^{z}=\left\{(a, b, z) \in \mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}: L(a, b, z)=0\right\}, \\
Q_{a, b}^{z}=\left\{(a, b, z) \in \mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}: Q(a, b, z)=0\right. \\
L_{b, c}^{x}=\left\{(x, b, c) \in \mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}: L(x, b, c)=0\right\}, \\
Q_{b, c}^{x}=\left\{(x, b, c) \in \mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}: Q(x, b, c)=0\right. \\
L_{a, c}^{y}=\left\{(a, y, c) \in \mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}: L(a, y, c)=0\right\}, \\
Q_{a, c}^{y}=\left\{(a, y, c) \in \mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}: Q(a, y, c)=0 .\right.
\end{gathered}
$$

Definition 2.1. We say that a fibre $X_{a, b}^{z}, X_{b, c}^{x}$ or $X_{a, c}^{y}$ is degenerate if it has positive dimension.

If the fibres $X_{a, b}^{z}, X_{b, c}^{x}$ or $X_{a, c}^{y}$ are non-degenerate at (a, b, c), they will consist of two points and the maps σ_{1}, σ_{2} and σ_{3} will be well defined morphisms at $(a, b, c) \in X$. Following the outline of [6] we have the following result characterizing the degenerate fibres.

Proposition 2.2. Let $[a, b, c] \in X$.
(1) $X_{a, b}^{z}$ is degenerate if and only if
$G_{0}^{x, y}(a, b)=G_{1}^{x, y}(a, b)=G_{2}^{x, y}(a, b)=H_{0,1}^{x, y}(a, b)=H_{0,2}^{x, y}(a, b)=H_{1,2}^{x, y}(a, b)=0$.
(2) $X_{a, c}^{y}$ is degenerate if and only if
$G_{0}^{x, z}(a, c)=G_{1}^{x, z}(a, c)=G_{2}^{x, z}(a, c)=H_{0,1}^{x, z}(a, c)=H_{0,2}^{x, z}(a, c)=H_{1,2}^{x, z}(a, c)=0$.
(3) $X_{b, c}^{x}$ is degenerate if and only if
$G_{0}^{y, z}(b, c)=G_{1}^{y, z}(b, c)=G_{2}^{y, z}(b, c)=H_{0,1}^{y, z}(b, c)=H_{0,2}^{y, z}(b, c)=H_{1,2}^{y, z}(b, c)=0$.
Proof. The proof is identical to the proof of proposition 1.4 in [6]. We do the proof of (1). When we substitute $z_{0}=\left(L-L_{1}^{x, y} z_{1}-\right.$ $\left.L_{2}^{x, y} z_{2}\right) / L_{0}^{x, y}, z_{1}=\left(L-L_{0}^{x, y} z_{0}-L_{2}^{x, y} z_{2}\right) / L_{1}^{x, y}$ and $z_{2}=\left(L-L_{1}^{x, y} z_{1}-\right.$ $\left.L_{0}^{x, y} z_{0}\right) / L_{2}^{x, y}$ into Q respectively we get formulas:

$$
\begin{aligned}
\left(L_{0}^{x, y}\right)^{2} Q(x, y, z) & \equiv G_{2}^{x, y} z_{1}^{2}+H_{1,2}^{x, y} z_{1} z_{2}+G_{1}^{x, y} z_{2}^{2} \\
\left(L_{1}^{x, y}\right)^{2} Q(x, y, z) & (\bmod L(x, y, z)), \\
\left(L_{2}^{x, y} z_{0}^{2}+H_{0,2}^{x, y} z_{0} z_{2}+G_{0}^{x, y} z_{2}^{2}\right. & (\bmod L(x, y, z)), \\
\left.G_{1}^{x, y}, z\right) & \equiv G_{1}^{x, y} z_{0}^{2}+H_{0,1}^{x, y} z_{0} z_{1}+G_{0}^{x, y} z_{1}^{2}
\end{aligned} \quad(\bmod L(x, y, z)) .
$$

Now, the proof is divided into two parts, depending on whether or not for the point $[a, b, c] \in \mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}$ we have $L(a, b, z) \equiv 0$.
If $L(a, b, z) \equiv 0$, then $X_{a, b}^{z}=Q_{a, b}^{z}$ and the fibre is degenerate. In this case $L_{0}^{a, b}=L_{1}^{a, b}=L_{2}^{a, b}=0$ will force $H_{i, j}^{x, y}(a, b)=G_{k}^{x, y}(a, b)=0$ and the proof is finished.

If $L(a, b, z) \neq 0$, one of the $L_{i}^{x, y}(a, b) \neq 0$ and the fact that $G_{0}^{x, y}(a, b)=$ $G_{1}^{x, y}(a, b)=G_{2}^{x, y}(a, b)=H_{0,1}^{x, y}(a, b)=H_{0,2}^{x, y}(a, b)=H_{1,2}^{x, y}(a, b)=0$ forces $Q(a, b, z) \equiv 0 \quad(\bmod L(a, b, z))$ and hence $X_{a, b}^{z}$ is degenerate containing the entire line $L_{a, b}^{z}$.
If $L(a, b, z) \neq 0$ and the fibre $X_{a, b}^{z}$ is degenerate we must have $L_{a, b}^{z} \subset$ $Q_{a, b}^{z}$. We are going to proof that $G_{0}^{x, y}(a, b)=G_{1}^{x, y}(a, b)=G_{2}^{x, y}(a, b)=$ $H_{0,1}^{x, y}(a, b)=H_{0,2}^{x, y}(a, b)=H_{1,2}^{x, y}(a, b)=0$. First let's do $G_{0}^{x, y}(a, b)=0$. If $L_{1}^{x, y}(a, b)=L_{2}^{x, y}(a, b)=0$, this follows from the definition, otherwise $\left(0, L_{2}^{x, y}(a, b),-L_{1}^{x, y}(a, b)\right) \in L_{a, b}^{z}$ and therefore must belong to $Q_{a, b}^{z}$, when we evaluate we get

$$
0=Q_{1,1}^{x, y}(a, b)\left(L_{2}^{x, y}(a, b)\right)^{2}-Q_{1,2}^{x, y} L_{2}^{x, y}(a, b) L_{1}^{x, y}(a, b)+Q_{2,2}^{x, y}\left(L_{1}^{x, y}(a, b)\right)^{2}
$$

So $G_{0}^{x, y}(a, b)=0$. In a similar way we do $G_{1}^{x, y}(a, b)=G_{2}^{x, y}(a, b)=0$. The substitution of the results $G_{i}^{x, y}(a, b)=0$ in the equations and evaluations at $x=a, y=b$ will give

$$
H_{1,2}^{x, y}(a, b) z_{1} z_{2}=H_{0,2}^{x, y}(a, b) z_{0} z_{2}=H_{1,0}^{x, y}(a, b) z_{1} z_{0}=0
$$

for all points $\left(z_{0}, z_{1}, z_{2}\right) \in L^{z}(a, b)$. If $L^{z}(a, b)$ is the line $z_{1}=0$, then $L_{0}^{x, y}(a, b)=L_{2}^{x, y}(a, b)=0$ and $H_{1,2}^{x, y}(a, b)=0$ using the definition. If $L^{z}(a, b)$ is the line $z_{2}=0$, then $L_{1}^{x, y}(a, b)=L_{2}^{x, y}(a, b)=0$ and $H_{1,2}^{x, y}(a, b)=0$ will be again equal to zero. Otherwise if $L_{a, b}^{z}$ is none of the lines $z_{1}=0$ or $z_{2}=0$, then $H_{1,2}^{x, y}(a, b)=0$ from the previous line. The other cases for $H_{i, j}^{x, y}(a, b)=0$ are solved similarly.

We can now define open sets U_{1}, U_{2}, U_{3} in such a way that the dominant rational maps $\sigma_{i}: X \longrightarrow X$ are bijective morphisms

$$
\begin{array}{r}
\sigma_{i}: U_{i} \longrightarrow U_{i} . \\
U_{1}=X-\left\{(a, b, c) \in X: G_{0}^{y, z}(b, c)=G_{1}^{y, z}(b, c)=G_{2}^{y, z}(b, c)=0\right. \\
\left.H_{0,1}^{y, z}(b, c)=H_{0,2}^{y, z}(b, c)=H_{1,2}^{y, z}(b, c)=0\right\} \\
U_{2}=X-\left\{(a, b, c) \in X: G_{0}^{x, z}(a, c)=G_{1}^{x, z}(a, c)=G_{2}^{x, z}(a, c)=0\right. \\
\left.H_{0,1}^{x, z}(a, c)=H_{0,2}^{x, z}(a, c)=H_{1,2}^{x, z}(a, c)=0\right\}, \\
U_{3}=X-\left\{(a, b, c) \in X: G_{0}^{x, y}(a, b)=G_{1}^{x, y}(a, b)=G_{2}^{x, y}(a, b)=0\right. \\
\left.H_{0,1}^{x, y}(a, b)=H_{0,2}^{x, y}(a, b)=H_{1,2}^{x, y}(a, b)=0\right\} .
\end{array}
$$

The maps $\sigma_{1}, \sigma_{2}, \sigma_{3}$ induce maps on divisors: Let's consider Y a closed subvariety of codimension one and $\sigma_{i}^{*} Y=\overline{\sigma_{i}^{-1} Y}$, the Zariski closure of the pre-image. In this way we induce maps on Weil divisors, that respect linear and numerical equivalence and descend to maps

$$
\sigma_{i}^{*}: \operatorname{Pic}(X) \longrightarrow \operatorname{Pic}(X) \quad \tilde{\sigma}_{i}^{*}: N S(X)_{\mathbb{Q}} \longrightarrow N S(X)_{\mathbb{Q}} .
$$

To study the action of the σ_{i}^{*} on $\operatorname{Pic}(X)$ we denote by H, H^{\prime} hyperplane sections representing the two fundamental classes in $\operatorname{Pic}\left(\mathbb{P}^{2} \times \mathbb{P}^{2}\right)$,

$$
\begin{aligned}
H & =\left\{\left(\left(a_{0}: a_{1}: a_{2}\right),\left(b_{0}: b_{1}: b_{2}\right)\right) \in \mathbb{P}^{2} \times \mathbb{P}^{2}: a_{0}=0\right\}, \\
H^{\prime} & =\left\{\left(\left(a_{0}: a_{1}: a_{2}\right),\left(b_{0}: b_{1}: b_{2}\right)\right) \in \mathbb{P}^{2} \times \mathbb{P}^{2}: b_{0}=0\right\} .
\end{aligned}
$$

and the divisors D_{x}, D_{y}, D_{z} on X defined by:
$D_{x}=\left\{P \in X: x_{0}=0\right\}, \quad D_{y}=\left\{P \in X: y_{0}=0\right\}, \quad D_{z}=\left\{P \in X: z_{0}=0\right\}$.
The pullbacks of H, H^{\prime} by the different projections give back the D_{x}, D_{y}, D_{z},

$$
\begin{array}{cc}
p_{x y}^{*} H=p_{3}^{*} H=D_{x}, & p_{x y}^{*} H^{\prime}=p_{3}^{*} H^{\prime}=D_{y}, \\
p_{x z}^{*} H=p_{2}^{*} H=D_{x}, & p_{x z}^{*} H^{\prime}=p_{2}^{*} H^{\prime}=D_{z}, \\
p_{y z}^{*} H=p_{1}^{*} H=D_{y}, & p_{y z}^{*} H^{\prime}=p_{1}^{*} H^{\prime}=D_{z} .
\end{array}
$$

Lemma 2.3. We have the following equivalences of divisors in $\operatorname{div}(X)$:
(a) $p_{1 *} p_{2}^{*} H \sim 4 H+4 H^{\prime}$;
(b) $p_{2 *} p_{1}^{*} H \sim 4 H+4 H^{\prime}$;
(c) $p_{3 *} p_{1}^{*} H^{\prime} \sim 4 H+4 H^{\prime}$.

Proof. The prove of all parts will be analogous and straightforward from the definition of H, H^{\prime} and the p_{i} 's. Let's see for example the proof of (a). The pull-back $p_{2}^{*} H=\left\{P \in X: x_{0}=0\right\}$ is given by the two equations

$$
L_{1}^{y, z} x_{1}+L_{2}^{y, z} x_{2}=0, \quad Q_{1,1}^{y, z} x_{1}^{2}+Q_{1,2}^{y, z} x_{1} x_{2}+Q_{2,2}^{y, z} x_{2}^{2}=0 .
$$

When we project onto (y, z) we eliminate x_{1}, x_{2} and get the equation

$$
G_{0}^{y, z}=\left(L_{1}^{y, z}\right)^{2} Q_{2,2}^{y, z}-L_{1}^{y, z} L_{2}^{y, z} Q_{1,2}^{y, z}+\left(L_{2}^{y, z}\right)^{2} Q_{1,1}^{y, z}=0 .
$$

where $G_{0}^{y, z}$ is a (4,4)-bihomogeneous form in y and z, and therefore $p_{1 *} p_{2}^{*} H \sim 4 H+4 H^{\prime}$.

Applying lemma 2.3 we obtain the push-forwards:
$p_{1 *}\left(D_{x}\right) \sim 4 H+4 H^{\prime}, \quad p_{2 *}\left(D_{y}\right) \sim 4 H+4 H^{\prime}, \quad p_{3 *}\left(D_{z}\right) \sim 4 H+4 H^{\prime}$,
and the action of the σ_{i}^{*} 's on the divisors D_{x}, D_{y}, D_{z} :

$$
\begin{gathered}
\sigma_{1}^{*}\left(D_{x}\right)=p_{1}^{*} p_{1 *} D_{x}-D_{x} \sim 4 D_{y}+4 D_{z}-D_{x}, \\
\sigma_{1}^{*}\left(D_{y}\right)=\sigma_{1}^{*} p_{1}^{*} H=\left(p_{1} \circ \sigma_{1}\right)^{*} H=D_{y}, \\
\sigma_{1}^{*}\left(D_{z}\right)=\sigma_{1}^{*} p_{1}^{*} H^{\prime}=\left(p_{1} \circ \sigma_{1}\right)^{*} H^{\prime}=D_{z}, \\
\sigma_{2}^{*}\left(D_{x}\right)=\sigma_{2} p_{2}^{*} H=\left(p_{2} \circ \sigma_{2}\right)^{*} H^{\prime}=D_{x}, \\
\sigma_{2}^{*}\left(D_{y}\right)=p_{2}^{*} p_{2 *} D_{y}-D_{y} \sim 4 D_{x}+4 D_{z}-D_{y}, \\
\sigma_{2}^{*}\left(D_{z}\right)=\sigma_{2}^{*} p_{2}^{*} H^{\prime}=\left(p_{2} \circ \sigma_{2}\right)^{*} H^{\prime}=D_{z}, \\
\sigma_{3}^{*}\left(D_{x}\right)=\sigma_{3}^{*} p_{3}^{*} H=\left(p_{3} \circ \sigma_{3}\right)^{*} H=D_{x}, \\
\sigma_{3}^{*}\left(D_{y}\right)=\sigma_{3}^{*} p_{3}^{*} H^{\prime}=\left(p_{3} \circ \sigma_{3}\right)^{*} H^{\prime}=D_{y},
\end{gathered}
$$

$$
\sigma_{3}^{*}\left(D_{z}\right)=p_{3}^{*} p_{3 *} D_{z}-D_{z} \sim 4 D_{x}+4 D_{y}-D_{z} .
$$

Using the actions of the σ_{i}^{*} we can get a polarizations by a very ample line bundle for the system of involutions $\sigma_{1}, \sigma_{2}, \sigma_{3}$.
Proposition 2.4. Suppose that r_{x}, r_{y}, r_{z} are positive real numbers and we have the polarization by three maps

$$
\sum_{i} \sigma_{i}^{*}\left(r_{x} D_{x}+r_{y} D_{y}+r_{z} D_{z}\right) \sim d\left(r_{x} D_{x}+r_{y} D_{y}+r_{z} D_{z}\right)
$$

in $\operatorname{Pic}(X) \otimes \mathbb{R}$. Then $d=9$ and $r_{x}=r_{y}=r_{z}=1$.
Proof. When we add up the actions of σ_{i}^{*} on $r_{x} D_{x}+r_{y} D_{y}+r_{z} D_{z}$, and equal that to $d\left(r_{x} D_{x}+r_{y} D_{y}+r_{z} D_{z}\right)$ for some $d>3$, we get the system of linear equations:

$$
\begin{aligned}
r_{x}+4 r_{y}+4 r_{z} & =d r_{x}, \\
4 r_{x}+r_{y}+4 r_{z} & =d r_{y}, \\
4 r_{x}+4 r_{y}+r_{z} & =d r_{z} .
\end{aligned}
$$

The determinant is $(9-d)(3+d)^{3}$ and the value of $d=9$ gives $r_{x}=$ $r_{y}=r_{z}=1$.
Proposition 2.5. The maps σ_{i} and $\sigma_{i j}=\sigma_{i} \circ \sigma_{j}$, for $i, j \in\{0,1,2\}$, satisfy the properties:
(1) $\left(\sigma_{i} \circ \sigma_{j}\right)^{*}=\sigma_{j}^{*} \circ \sigma_{i}^{*}$,
(2) $\left(\sigma_{i j}^{n}\right)^{*}=\left(\sigma_{i j}^{*}\right)^{n}$.

Proof. In general, given two rational maps $\tau: X \rightarrow X$ and $\tau^{\prime}: X \rightarrow$ X defining involutions $\tau: U_{\tau} \longrightarrow U_{\tau}$ and $\tau^{\prime}: U_{\tau^{\prime}} \longrightarrow U_{\tau^{\prime}}$ on open sets U_{τ} and $U_{\tau^{\prime}}$ respectively, we will have $\left(\tau \circ \tau^{\prime}\right)^{*}=\tau^{\prime *} \circ \tau^{*}$. Let Y be an irreducible subvariety. If $P \in \overline{\tau\left(Y \cap U_{\tau}\right)} \cap U_{\tau^{\prime}}$, there exist a sequence $P_{n} \rightarrow P$, with $P_{n} \in \tau\left(Y \cap U_{\tau}\right) \cap U_{\tau^{\prime}}$. Therefore $\tau^{\prime}\left(P_{n}\right) \rightarrow \tau^{\prime}(P)$ and $\tau^{\prime}(P) \in \overline{\left.\tau^{\prime}\left(\tau\left(Y \cap U_{\tau}\right)\right) \cap U_{\tau^{\prime}}\right)}$. In other words $\overline{\tau^{\prime}\left(\overline{\tau\left(Y \cap U_{\tau}\right)} \cap U_{\tau^{\prime}}\right)} \subset$ $\overline{\tau^{\prime}\left(\tau\left(Y \cap U_{\tau}\right) \cap U_{\tau^{\prime}}\right)}$, so this two sets must be equal and $\left(\tau \circ \tau^{\prime}\right)^{*}=$ $\tau^{\prime *} \circ \tau^{*}$. For the first part of the theorem we take $\sigma_{i}=\tau$ and $\sigma_{j}=\tau^{\prime}$. For the second part we proceed by induction and use the result to proof the induction step. If we suppose that $\left(\sigma_{i j}^{n}\right)^{*}=\left(\sigma_{i j}^{*}\right)^{n}$ is true, then $\left(\sigma_{i j}^{*}\right)^{n+1}=\sigma_{i j}^{*}\left(\left(\sigma_{i j}^{*}\right)^{n}\right)=\sigma_{i j}^{*}\left(\left(\sigma_{i j}^{n}\right)^{*}\right)$ By our result above with $\tau=\sigma_{i j}$ and $\tau^{\prime}=\sigma_{i j}^{n}$, the last equals to $\left(\sigma_{i j}^{n+1}\right)^{*}$.
2.1. Computation of dynamical degree. In this subsection we study the action induced by the maps $\sigma_{i j}=\sigma_{i} \circ \sigma_{j}$ on the subspace $V=$ $\operatorname{Span}\left(D_{x}, D_{y}, D_{z}\right)$ of $\operatorname{Pic}(X) \otimes \mathbb{R}$. As an application we will be able to get the dynamical degree of those maps for members of the family with Picard number $p(X)=3$.

Theorem 2.6. Let $\sigma_{i j}$ be the rational dominant map $\sigma_{i} \circ \sigma_{j}: X \rightarrow X$. Let V be the subspace of $\operatorname{Pic}(X) \otimes \mathbb{R}$ spanned by D_{x}, D_{y}, D_{z} and consider the action of $\sigma_{i j}^{* n}: V \longrightarrow V$. The eigenvalues of $\sigma_{i j}^{* n} \mid V$ belong to the set $\left\{1, \beta^{n}, \beta^{\prime n}\right\}$, where $\beta=7+4 \sqrt{3}$ and $\beta^{\prime}=\frac{1}{\beta}$.

Proof. The action of the maps $\sigma_{12}^{*}, \sigma_{31}^{*}, \sigma_{31}^{*}, \sigma_{32}^{*}, \sigma_{13}^{*}$ and σ_{23}^{*} with respect to that base $\left\{D_{x}, D_{y}, D_{z}\right\}$ is given respectively by the matrices

$$
\begin{array}{ll}
\sigma_{12}^{*}=\left(\begin{array}{rrr}
-1 & -4 & 0 \\
4 & 15 & 0 \\
4 & 20 & 1
\end{array}\right) & \sigma_{13}^{*}=\left(\begin{array}{rrr}
15 & 0 & 4 \\
20 & 1 & 4 \\
-4 & 0 & -1
\end{array}\right) \\
\sigma_{12}^{*}=\left(\begin{array}{rrr}
15 & 4 & 0 \\
-4 & -1 & 0 \\
20 & 4 & 1
\end{array}\right) & \sigma_{23}^{*}=\left(\begin{array}{rrr}
1 & 20 & 4 \\
0 & 15 & 4 \\
0 & -4 & -1
\end{array}\right) \\
\sigma_{31}^{*}=\left(\begin{array}{rrr}
-1 & 0 & -4 \\
4 & 1 & 20 \\
4 & 0 & 15
\end{array}\right) & \sigma_{32}^{*}=\left(\begin{array}{rrr}
1 & 4 & 20 \\
0 & -1 & -4 \\
0 & 4 & 15
\end{array}\right)
\end{array}
$$

With the help of SAGE we find that the six matrices are sharing the same characteristic polynomial $p=-(\lambda-1)\left(\lambda^{2}-14 \lambda+1\right)$. The roots of $p(\lambda)$ are $\left\{1, \beta, \beta^{\prime}\right\}$ with $\beta=7+4 \sqrt{3}$ and $\beta^{\prime}=1 / \beta$, therefore all the six matrices are diagonalizable and the eigenvalues of the the powers are from the set $\left\{1, \beta^{n}, \beta^{\prime n}\right\}$.
Corollary 2.7. Suppose that the Picard number $p(X)=3$, then the first dynamical degree $\delta_{\sigma_{i j}}$ of $\sigma_{i j}$ is $\delta_{\sigma_{i j}}=\beta$.
Proof. The divisors D_{x}, D_{y}, D_{z} represent three distinct classes in $N S(X)_{\mathbb{Q}}$. If the Picard number $p(X)=3$, then we have $N S(X)_{\mathbb{Q}} \cong V_{\mathbb{Q}}$. The first dynamical degree of any of the maps $\sigma_{i j}$ is:

$$
\delta_{\sigma_{i j}}=\limsup _{n \rightarrow \infty} \rho\left(\left(\sigma_{i j}^{n}\right)^{*}\right)^{1 / n}=\limsup _{n \rightarrow \infty} \rho\left(\left(\sigma_{i j}^{*}\right)^{n}\right)^{1 / n}=\limsup _{n \rightarrow \infty}\left(\beta^{n}\right)^{1 / n}=\beta
$$

where the last step comes from proposition 2.5.

References

[1] V. I. Arnold, Dynamics of complexity of intersections. Bol. Soc. Brasil. Mat. (N.S.), 21(1) (1990), 1-10.
[2] A. Baragar, Canonical vector heights on K3 surfaces with Picard number three: an argument for nonexistence, Math. Comp. 73 (2004), 2019-2025.
[3] Rational points on K3 surfaces in $\mathbb{P}_{1} \times \mathbb{P}_{1} \times \mathbb{P}_{1}$, Math. Ann. 305 (1996), 541-558.
[4] A. Baragar and R. van Luijk, K3 surfaces with Picard number three and canonical heights, Math. Comp. 76 (2007), 1493-1498.
[5] G. S. Call and J. Silverman, Canonical heights on varieties with morphisms, Compositio Math. 89 (1993), 163-205.
[6]_Computing the canonical height on K3 surfaces. Math. Comp., 65 (1996), 259-290.
[7] R. Hartshorne, Algebraic geometry, Springer-Verlag, Graduate Texts in Mathematics, vol. 52, New York, (1977).
[8] M. Hindry and J. Silverman, Diophantine Geometry: an introduction, Graduate Texts in Mathematics 201 (2000).
[9] S. Kawaguchi, Canonical heights, invariant currents, and dynamical eigensystems of morphisms for line bundles, J. Reine Angew. Math. 597 (2006), 135-173
[10] J. Silverman, Rational points on K3 surfaces: a new canonical height, Invent. Math. 105 (1991), 347-373.
[11] ___ Dynamical degrees, arithmetic degrees, and canonical heights for dominant rational self-maps of projective space, to appear in Ergodic Th. and Dyn. Sys.
[12] L. Wang, Rational points and canonical heights on K3-surfaces in $\mathbb{P}_{1} \times \mathbb{P}_{1} \times \mathbb{P}_{1}$, Contemp. Math. 186, AMS, (1994) 273-289.
[13] J. Wehler, K3-surfaces with Picard number 2, Arch. Math. (Basel) 50 (1988), no. 1, 7382.

Department of Mathematics and Computer Science. Bronx Community College of CUNY. 2155 University Ave. Bronx, NY 10453

E-mail address: jorge.pineiro@bcc.cuny.edu

[^0]: 2010 Mathematics Subject Classification. Primary: 37P55 ; Secondary: 14J35, 14J28, 32J15 .

 I am grateful to Joseph Silverman for the discussions on the subject of the paper during the ICERM Semester program on Complex and Arithmetic Dynamics.

