MATH 30 PRECALCULUS FIRST TEST. FALL 2011

Exercise 1. Explain whether or not the following relations represent functions. In case of being functions are they one-to-one?
a. $\{(1,3) ;(2,4) ;(3,4) ;(5,5)\}$
b. $\quad\{(1,3) ;(2,4) ;(3,4) ;(3,5)\}$
c. $\left\{(x, y): x^{2}+y^{2}=25\right\}$ d. $\{(x, y): x+y=9\}$

Exercise 2. Given the functions $f(x)=4 x+2$ and $g(x)=x^{2}-3 x-4$ find:

1. $f(g(x))$
2. $g(f(x))$
3. $g(x) \cdot f(x)$
4. $(f / g)(-2)$
5. $3 x^{2}-4 x+1-g(x)$
6. $f(x)+g(x)$
7. $f(x)=\frac{g(x+h)-g(x)}{h}$

Exercise 3. Determine which of the following functions is even, odd or neither.

1. $f(x)=3 x^{2}-5 x^{8}$
2. $g(x)=-2 x+2 x^{3}$
3. $h(x)=x^{2}-4 x+2$
4. $\quad k(x)=x(3 \sin x-5 x)$

Exercise 4. Find the inverse of the following functions:

1. $f(x)=3 x+7$
2. $f(x)=\frac{2 x-3}{4 x+5}$
3. $h(x)=x^{3}+6$

Exercise 5. Sketch graph of function $f(x)=2 x^{2}-4 x-6$. Include computation of zeroes, y-intercept and vertex. Find the range and argue why this function is not one-to-one. Can you see a smaller domain in which this function will be one-to-one?

Exercise 6. Use the graph of each of the following functions and find its range:

1. $f(x)=3 x-5$, with domain $(-1,4] \quad 2 . g(x)=-2 x+1$, with domain $[2,5]$
2. $h(x)=x^{2}-4 x+2$, with domain $[-5,6) \quad$ 4. $\quad k(x)=3 \sin x-5$, with domain $[-2 \pi, \pi]$

Exercise 7. Graph the following functions using SAGE and determine the intervals where they are increasing or decreasing.
$1 y=x^{3}-x^{2}-4 x+4 \quad$ 2. $y=\cos x$
$3 y=\frac{x}{x^{2}+1} \quad$ 4. $\quad y=\frac{x}{x^{2}-1}$
Exercise 8. Find the domain of the following functions:
$1 f(x)=\sqrt{x-5}$
$2 g(x)=\sqrt[3]{5 x-10}$
$3 f(x)=\frac{2 x-3}{4 x+5}$
$4 f(x)=\log _{3}(5 x-2)$
Then use SAGE to graph the functions.

