## EXTRA-CREDIT OF MATH 30: PRECALCULUS. FALL 2012

1. (5 points) Given the functions $f(x)=x^{2}+2 x+1$ and $g(x)=-2 x-1$. Find $f \circ g(x)$ and $g \circ f(x)$.
2. Given the polynomial function $g(x)=2(x+1)(x-2)^{2}(x-4)$.
(a) (2 points) Find the $y$-intercept.
(b) (5 points) Find the zeroes and their multiplicities.
(c) (2 points) Find the leading term.
(d) (4 points) Sketch the graph of $y=f(x)$.
(e) (5 points) Estimate the $x, y$ coordinates of the local extrema: max and min. Estimate based on your graph the intervals where the function is increasing and the intervals where the function is decreasing.
(f) (2 points) Estimate based on your graph the value of $f(-.4) \approx$
3. Given the polynomial $f(x)=3 x^{3}+4 x^{2}-5 x-2$ :
(a) (3 points) Find the list of all possible zeroes.
(b) (3 points) Is $x=1 / 2$ a zero of $f(x)$ ? Why?
(c) (9 points) Find the actual zeroes of $f(x)$.
(d) (3 points) Factor $f(x)$ completely.
4. Given the rational function $f(x)=\frac{x^{2}-3 x-4}{2 x^{2}-8}$
(a) (2 points) Find the $y$-intercept and the $x$-intercepts.
(b) (3 points) Find the domain of $f(x)$.
(c) (3 points) Find the zeroes of $f(x)$.
(d) (5 points) Solve the equation $f(x)>0$. What is the meaning of $f(x)>0$ in the graph?
(e) (4 points) Find the equation of the vertical and horizontal asymptotes.
(f) (3 points) Estimate the value of $f\left(10^{100}\right)$ without doing any actual computation.
5. (10 points) Sketch the graph of the rational function $f(x)=\frac{3 x-1}{2 x+2}$. Do not forget to include asymptotes, domain, zeroes and y-intercept.
6. Given $f(x)=2^{x}-3$
(a) (3 points) Filled up a table of values with $x=-3,-2,-1,0,1,2,3$.
(b) (3 points) Find the inverse $f^{-1}$ and a table of values to graph it.
(c) (5 points) Sketch both functions $f(x)$ and $f^{-1}(x)$ in the same set of coordinate axis. What symmetry do you observe?
(d) (4 points) State intercepts and asymptotes for $f$ and $f^{-1}$.
7. Compute the the x in each case:
(a) ( 8 points) $\log _{2}(x)=5, \quad \log _{x}(3)=2, \quad \log _{8}(4)=x, \quad \log _{27}(3)$
(b) (4 points) Given $\log _{a}(2)=3$ find the value of: $\quad x=\log _{a}(4 a), \quad x=\log _{a}\left(8 a^{2}\right)$
8. (5 points) Find domain of the function $f(x)=\log _{2}(x-4)+\log _{2}(x+3)$.
(a) (5 points) Solve the equation $\log _{2}(x-4)+\log _{2}(x+3)=3$ on its domain.
9. (5 points) Solve the equation $3\left(5^{x-3}+2\right)=10$. Express your answer using log's in base 10 .
